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ABSTRACT 
An important challenge in designing ubiquitous computing 
experiences is negotiating transitions between explicit and 
implicit interaction, such as how and when to provide users 
with notifications. While the paradigm of implicit 
interaction has important benefits, it is also susceptible to 
difficulties with hidden modes, unexpected action, and 
misunderstood intent. To address these issues, this work 
presents a framework for implicit interaction and applies it 
to the design of an interactive whiteboard application called 
Range. Range is a public interactive whiteboard designed to 
support co-located, ad-hoc meetings. It employs proximity 
sensing capability to proactively transition between display 
and authoring modes, to clear space for writing, and to 
cluster ink strokes. We show how the implicit interaction 
techniques of user reflection (how systems indicate to users 
what they perceive or infer), system demonstration (how 
systems indicate what they are doing), and override (how 
users can interrupt or stop a proactive system action) can 
prevent, mitigate, and correct errors in the whiteboard’s 
proactive behaviors. These techniques can be generalized to 
improve the designs of a wide array of ubiquitous 
computing experiences. 

Author Keywords 
Implicit interaction, foreground/background, proactive, 
proxemics, ubiquitous computing, whiteboards,  

ACM Classification Keywords 
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Interfaces — input devices and strategies, interaction styles.  

INTRODUCTION 
One of the defining traits of ubiquitous computing is the 
pursuit of invisibility. Different camps of interface 
researchers and designers have taken different tacks 
towards this elusive goal. This is evidenced by the amazing 
diversity of ubiquitous computing genres which cite Mark 
Weiser’s “Computer for the 21st Century” [32] as a 
genesis—ambient displays, tangible user interfaces, 
context-aware computing, attention-sensitive interfaces, just 
to name a few. In light of this great variety of approaches 
towards invisibility, it is useful to keep in mind that 
invisibility, as championed by Weiser, is not so much about 
staying beneath notice as enabling seamless 
accomplishment of task.  

In their paper, “Making Sense of Sensing Systems: Five 
Questions for Designers and Researchers,” Bellotti et al. 
point out that ubiquitous computing systems are particularly 
susceptible to problems of unintended actions, undesirable 
results, and difficulty detecting or correcting mistakes [1]. 
This occurs because of the high potential for 
miscommunication when the interaction between the 
computing system and the user occurs beneath the user’s 
notice or without the user’s initiative. Since invisibility is 
about enabling seamless accomplishment of desired tasks 
rather than evading notice, we propose that it is important 
to understand how to design transitions between explicit 
and implicit interaction, so that users can make requests, 
anticipate actions, and make corrections in a robust manner 
even in situations where they have limited attentional, 
cognitive, or physical bandwidth for interaction. 

The goal of this paper is to explore the range of ways that 
designers can establish shared understanding between user 
and system without using keyboard, mouse, or stylus for 
input, and without using dialog boxes for output. To 
accomplish this task, we present a framework for implicit 
interaction, as a well as an implementation of a ubicomp 
whiteboard application, from which we extrapolate general 
purpose implicit interaction techniques. It is our hope that 
this framework and illustration will help to add implicit 
interaction design to the range and repertoire of ubicomp 
interaction designers.  
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IMPLICIT INTERACTION FRAMEWORK 
Implicit interactions are an inevitable part of “smart” 
products, whose actions contain some degree of agency of 
activity that occurs without the explicit behest or awareness 
of the user. Implicit interactions enable communication and 
action without explicit input or output. One way that an 
interaction can be implicit is if the exchange occurs outside 
the attentional foreground of the user. This occurs in 
traditional computing–when the computer auto-saves your 
files, or filters your spam e-mail, for instance–as well as in 
ubiquitous computing interaction. The other way that an 
interaction can be made implicit is if the exchange is 
initiated by the computer system rather than by the user–if 
the computer alerts you to new mail, say, or when it 
displays a screen saver. It may seem counter-intuitive that 
something that grabs attention could be implicit, but the key 
factor is that the interaction is based on an implied demand 
for information or action, not an explicit one. 

The implicit interaction framework (see Figure 1) divides 
the space of possible interactions along the axes of 
attentional demand and initiative [15]. Attentional demand 
is the degree of cognitive and perceptual load imposed on 
user by the interactive system [23]. Foreground interactions 
require a greater degree of focus, concentration and 
consciousness, and are exclusive of other focal targets, 
while background interactions are peripheral, have less 
demand and can occur in parallel with other interactions 
[34]. Initiative is an indicator of how much presumption the 
interactive system uses in the interaction. The framework 

presumes the perspective of system designers, so 
interactions that are initiated and driven by the user 
explicitly are called reactive interactions, while interactions 
initiated by the system based on inferred desire or demand 
are proactive interactions [29]. By characterizing 
interactions in this way, we are able to generalize about the 
capabilities and features of whole classes of interactions in 
a domain-independent fashion. 

Let us examine these two dimensional variables in greater 
depth: 

Attentional Demand 
Attentional demand does not correspond easily with any 
particular metric, in part because attention is very complex 
[3]. Any comprehensive definition needs to account not 
only for the load on the resource of cognition [18], but also 
for spatialization (whether something is in the center or the 
periphery of one’s notice) [34], breadth (whether attention 
is focused on a single stimulus or many), and gestalt 
(whether attention is devoted to the abstracted whole or the 
individual parts) [30]. The other challenge that researchers 
have identified is that attention—by its very nature—can be 
challenging to evaluate directly [23]. 

Interaction designers commonly manipulate attentional 
demand by adjusting the perceptual prominence of objects, 
often implicitly, through visual organization techniques 
such as contrast, hierarchy, and weight [35]. Demand may 
also be choreographed through more dynamic means, such 
as pointing (e.g. calling attention to an object by gesturing 

   
Figure 1. The Implicit Interaction Framework is based on two axes: the level of attentional demand the system places on the 
user and the balance of initiative taken by the system on behalf of the user. This framework provides a domain-independent 
characterization of an interaction’s implicitness. 
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at it) or placing (e.g. calling attention to an object through 
its prominent placement) [7]. Still another way to affect the 
degree of attention demanded is through abstraction and 
chunking, whereby small interactions are combined into a 
larger whole [4].  

Initiative 
Initiative is salient in situations where actors are working 
together to accomplish a task, and can be highly contextual. 
If a word processing program saves your document because 
you command it to, it is clearly reactive. If it auto-saves 
your document because you have set it to do so every 10 
minutes, it may do so out of your attentional center, but it is 
still responding to your explicit command. However, if the 
same program saves your program because it feels that a lot 
of changes have been made, it is more proactive; it is 
operating in a realm of greater presumption with respect to 
the needs and desires of the user.  

Designers can manipulate the proactivity and reactivity of a 
designed interaction by dictating the order of actions—does 
the system act first, or wait for the user to act?—as well as 
by choosing the degree of initiative—does the system act, 
offer to act, ask if it should act, or merely indicate that it 
can act? Designers also affect the degree of initiative when 
they gather more data to ensure the certainty of the need for 
an action or when they design in features to mitigate the 
potential cost of error for the action. Even in the reactive 
realm, the degree of initiative can vary based on the amount 
that the user needs to maintain ongoing control and 
oversight of an action in progress. 

Types of Interactions 
The following are descriptions of interactions and 
illustrating examples for each quadrant: 

Reactive/foreground 
Interactions take place explicitly and at the user’s 
command. Users are given explicit and detailed oversight 
over actions and feedback on results. Such interactions are 
appropriate when the interaction is the primary task and is 
controlled by a knowledgeable user. Normal GUI 
interaction falls in this quadrant. 

Reactive/background 
Interactions occur in response to user actions or external 
stimuli, but feedback is generalized or hidden from the user 
(abstraction). Such interactions can spare the user from the 
nitty-gritty details of a task or help perform routine tasks 
automatically with little or no user oversight (automation). 
The “auto-save” on a typical word-processing program, 
which is based on time elapsed,  exemplifies this type of 
interaction. 

Proactive/foreground 
Interaction takes place in the attentional foreground, but 
involves greater urgency on the part of the system. The 
system may provide unsolicited information (alerts) or 

guide the interaction by instructing the user what to do 
(direction). These interactions are typical in reminder and 
tutorial scenarios. The “You’ve got mail” sound and 
bouncing icon in typical e-mail program are examples of 
proactive/foreground interactions. 

Proactive/background 
The system anticipates what to do and performs actions 
with low oversight or input. These interactions are usually 
used for tasks where the cost of error is low: for instance, 
pre-fetching data, or modeling preferences. They may also 
be employed to address critical tasks that the user is 
somehow unable to perform, like alerting the police when 
someone is intruding into one’s home.  

Implicit Interaction Patterns 
While it is possible to speak of implicitness or explicitness 
as genres of interaction, the key value of the implicit 
interaction framework is its ability to illuminate the 
dynamic transitions between the quadrants in successful  
interaction sequences. By framing effective interactions in 
terms of the dynamics of attentional demand and initiative, 
the framework illuminates patterns of social interaction, 
which makes it distinct from frameworks which emphasize 
patterns of domain-specific solutions, such as [5], or 
context-specific routines, such as [30]. Thus, interaction 
designers may more easily recognize and reason how and 
why existing implicit interactions function, and leverage 
that understanding in designing implicit interactions for 
novel applications where domain precedents and 
conventions may not exist. 

To explore the design of implicit interactions, we have 
applied the implicit interaction framework to the design of 
new features for an interactive whiteboard. In the following 
sections, we will discuss our selection of interactive 
whiteboards as the domain for our exploration, review 
related work on implicit interactions and whiteboards that 
informed our framework and interaction design, outline the 
specific design our electronic whiteboard system, Range, 
and discuss the implicit interaction techniques illustrated by 
our implementation. 

INTERACTIVE WHITEBOARDS AS A TESTING GROUND 
FOR IMPLICIT INTERACTION 
The ephemeral nature of whiteboard ink allows users to 
share ideas quickly—and just as quickly, to amend those 
ideas. The improvisational quality of whiteboard use is a 
good match for the provisional ideas that are generated in 
informal design meetings, when people are more concerned 
with entertaining possibilities than communicating fact. The 
ubiquity of whiteboards in dedicated design spaces (such as 
war rooms, and project rooms) and informal meeting spaces 
(such as offices, break rooms, and hallways) is a testimonial 
to the utility of the whiteboard to designers everywhere. 

The utility and ubiquity of whiteboards makes them an 
appealing platform for computational enhancement. 
However, the attractive aspects of whiteboards are 
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inextricably linked to the factors that also make them 
challenging to augment. The shared, public nature of 
whiteboards means that the interface must succeed for 
walk-up use, and the focus on quickly sharing ideas means 
that any services provided must have a low threshold to 
entry and minimal attentional overhead [27].  

The issues associated with whiteboards are like those of 
many ubiquitous computing situations: interactions are 
often transient and needed on-demand; and the users are 
often distracted and untrained. We have introduced this 
whiteboard as an implementation that helps manifest the 
opportunities for and challenges with implicit design in 
ubiquitous computing. 

RELATED WORK 
This paper draws on related work in three areas: the 
framing of interaction styles, workplace studies of 
whiteboard usage, and the design of electronic whiteboards.  

Design Frameworks for Implicit Interaction 
The framework laid out in this paper builds on Buxton's 
foreground/background model [2]; in it, Buxton 
distinguishes foreground interactions—to paraphrase, 
intentional activities that take place in the fore of human 
consciousness—from background interactions, for example, 
lights that automatically turn on when you enter a room—
which take place in the periphery of consciousness [34]. 
This model identifies the same attention and initiative used 
in our framework, but assumes the two are inherently 
linked. Actions initiated by the user are assumed always to 
be taken with intent; actions taken by the system are 
assumed to take place in the periphery. Our framework 
amends Buxton’s framework by decoupling attention and 
initiative into separate axes. Buxton’s foreground 
corresponds to our reactive/foreground quadrant, and his 
background corresponds to our proactive/background.  

The implicit interaction framework bears some 
commonality with Pederson’s model for tacit interaction 
[24]. Pedersen’s framework models tasks based on the 
degree of attention and focus required and the degree of 
intentionality in action. However, the tacit interaction 
framework describes interactions only in terms of the user’s 
degree of intention. No distinction is made between 
situations where users don’t have to think and plan because 
the users have developed tacit knowledge of how to operate 
a task, and situations where the users don’t have to think 
and plan because the system is acting proactively on their 
behalf. In a well-designed interaction, the user may be 
unaware of the system, but this is the effect of successful 
implicit interactions, and not the cause. Our framework 
aims to illustrate specific methods of achieving seamless 
interactions. 

Horvitz et al. [13] present a related model for notification 
displays. This framework uses an economic model of user 
attention, and determines the expected utility of presenting 
users with notifications, based on the level of attentional 

cost to the user and the expected value of the information. 
This model traverses the same territory as the right side of 
our framework, ranging from proactive/foreground to 
proactive/background. Its use of uncertainty as a measure of 
proactivity guided our framework’s formulation of 
initiative. This model is ideally suited to help computers 
make dynamic determinations about the right way to deliver 
a piece of information. It provides less guidance, however, 
to the interaction designers developing the different 
methods the computer might eventually chose from. 

Workplace Studies of Whiteboard Usage 
The Flatland whiteboard interface [23] was based on 
informal observations of whiteboard use in office settings. 
Researchers observed that office use of whiteboards was 
characterized by thinking and pre-production tasks, 
everyday content (such as task lists, sketches, and 
reminders), clusters of content (both persistent and short-
lived), and a transitioning between semi-public to personal 
use. Our design of Range builds on the observations that 
Flatland is based on. It includes features to support a range 
of use from display to whiteboard, freeing up space for 
drawing, and clustering strokes of ink. The major departure 
in our explorations is the use of distance sensing as input 
for these features, and the avoidance of meta-strokes or 
other explicit techniques. 

Longitudinal studies of student engineering design teams 
working on multi-month projects by Ju et al. [14] found 
that engineers engaged in informal meetings would cycle 
between phases of drawing and analysis; these changes 
corresponded with changes in their physical proximity to 
the whiteboard. Users would stand close to the board when 
they were writing, further back when discussing written 
artifacts in detail, or further back still when engaging in 
meta-discussion. They also found that input was initially 
free-form, but that meeting participants would often close 
their meetings by performing post-facto structuring on 
previously generated sketches, drawing borders, lines, and 
arrows to explicitly group or relate elements on the board. 

Our observations of whiteboards, based on photos taken 
around campus in several departments, indicate that 
sketches on the board can generally be categorized as either 
“read-only” or “write-only.” What we called “read-only” 
were messages that were meant to persist, and changed 
infrequently: phone numbers of colleagues, lists of 
upcoming deadlines. Sketches that were “write-only” were 
usually generated in informal meetings, and were 
infrequently referenced after their initial creation. 
Regardless of field, people implicitly placed information 
that is meant to be static or saved along the edges of the 
board, saving the center of the board for temporary and 
speculative work. This finding validates location of 
information on the board as a crucial context variable. 
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Design of Electronic and Augmented Whiteboards 
Electronic whiteboards emerged out of the ubiquitous 
computing research at PARC, and their goal of computing 
by the inch, foot, and yard [33]. PARC’s LiveBoard [8] was 
a rear-projected electronic whiteboard that afforded pen-
based input through infrared-emitting styli. Tivoli [25], the 
LiveBoard’s whiteboard application, introduced a set of 
interaction techniques for creating and manipulating ink-
based documents, and supported input from multiple pens 
simultaneously. Ink strokes were stored as grouped vector 
objects, and the system introduced gestures for the 
selection, grouping, and manipulation of ink content. 

Subsequent research [21, 22] explored the use of implicit 
structure in the spatial layout and proximity of users’ 
inkmarks. In grappling with whether such implicit 
structures should be exploited by the electronic whiteboard 
as input, or if input should be wholly freeform, the PARC 
researchers introduced the first pen-based interface to 
decouple recognition (having the system create an internal 
hypothesis of the user’s intended structure) from 
transformation (having the system in turn modify the 
representation of the user’s data based on its belief about 
the structure). These ideas were extended upon in SILK 
[17] and subsequent informal user interfaces, e.g., [19] [16]. 
This selective and timed presentation of what the system 
infers is used in our design of Range.  

Recent work on electronic whiteboards has focused on 
incorporating aspects of the user’s physical context in 
whiteboard use into the interaction. Research on using 
paper and digital artifacts with an electronic whiteboard 
[16], on using pen-based command techniques for high-
resolution displays [10] and on physical gestures [28] and 
tokens [20] for specifying behaviors begins to realize 
Weiser’s vision of computation that is embedded into the 
fabric of everyday life. Current work in ambient interfaces 
is also exploring the understanding of the user’s physical 

context as an implicit input in the domain of large 
interactive public displays. Both Prante et al.’s Hello.Wall 
[26] and Vogel & Balakrishnan’s interactive Ambient 
Public Displays [31] stand out for explicitly noting the 
proxemic relationship between the physical distance 
between multiple users and the display, and for applying 
that information to modify the contents of the display 
accordingly. Our whiteboard design draws on similar 
proxemic relationships between users and whiteboards, but 
the implicit meaning of the being close or far from each 
board differs because whiteboards are intrinsically meant 
for writing as well as display. 

This paper offers two contributions beyond this work in 
electronic whiteboard interactions. The first is that it 
provides a richer framework for describing and designing 
implicit interactions; the second is that it is oriented 
towards broadening the range of interactive technique 
rather than the enriching the pool of whiteboard features. 

THE RANGE WHITEBOARD 
To illustrate how implicit interaction techniques can be 
used to prevent, mitigate and correct the problems of 
proactivity in the area of whiteboard interaction, we 
designed an interactive whiteboard named Range, which 
uses infrared distance sensors to subtly and proactively 
interact with informal meeting participants. 

Implementation 
Range was implemented using a combination of pre-
existing hardware and software tools and technology. 

Platform 
The Range whiteboard prototype employs a rear-projection 
SMART Board containing an SXGA+ resolution projector 
(1400x1050) and a Windows XP PC. Four SHARP 
GP2Y0A 150 cm analog distance sensors were mounted to 
the front of the board, and connect to the PC over USB via 

  
 
 
Figure 2. Physical setup of Range (left), with diagram of interaction zones (right). 
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the d.tools hardware and libraries [12]. The software 
component of Range was written in C# using the Microsoft 
Tablet PC SDK and the SMART Board SDK.  

Physical Interaction Design 
The region in front of the board is divided into four zones, 
which we called intimate, personal, social, public in 
reference to proxemics pioneer Edward T. Hall’s distance 
zones [11]. We defined the intimate zone to be the region in 
which users stand to write at the board, testing with 
multiple users to increase the robustness of the zone 
definitions. The personal zone was set further back, at a 
distance (>15 inches back) where users were not “at” the 
board, but could easily reach the board for pointing and text 
manipulation. The social zone (>25 inches back) was out of 
touching distance from the board but in easy viewing 
distance of the board. The public zone comprises the 
distance beyond the social (> 40" back).  

The operational zone was based on the user closest to the 
board; we found that this is usually the person with the pen 
and thus the person “driving” the interaction at the 
whiteboard. 

Operation 
The SMART Board uses a pen tray with four colored styli 
and an eraser. Strokes made with the styli make ink strokes 
of the corresponding color on the board, and strokes made 
with the eraser remove marks intersected by the erase 
stroke. Input on the capacitive board is presumed to be 
made by the users’ fingers if all the styli are in the tray; 
such finger input is used to select and move ink strokes and 
clusters.  

We modified the SMART Board operation so that inputs 
issued when the user is in the personal zone are read as 
select and move operations even if the pen is out of the tray; 
this seems more natural to users and lessens the instances of 
erroneous input. 

Features 
We implemented three features in Range that demonstrate 
implicit interaction techniques: an automatic transition from 
ambient display to drawing space, automatic space clearing, 
and automatic ink stroke clustering. 

Transition from Display to Drawing Surface 
When users are not engaged with Range, the whiteboard 
switches to ambient display mode, overlaying the existing 
whiteboard contents with a transparent blue backdrop and a 
stream of digital images of interest to users. Our 
implementation uses snapshots of previous whiteboard 
states and other photos of interest from an online photo-
sharing site to improve project awareness. 

As a user approaches a Range whiteboard in screensaver 
mode, the backdrop fades and the displayed screensaver 
content floats off to one side, allowing the user to re-engage 
the whiteboard contents beneath. If the user touches the 

departing screensaver content, it stops and becomes 
selected so that the user may move it to some place on the 
whiteboard of his or her choosing. We found this “floating” 
to be important because it helped users to form a model of 
where ambient images “went to.” This metaphor also 
facilitated correction; users found it “natural” to keep 
images by grabbing them as they were departing. 

Making space 
As the designers of Flatland observed, whiteboards are not 
merely ephemeral objects: people leave drawings or notes 
on the board in order to provide shared reference for groups 
[23]. However, a whiteboard full of writing can discourage 
whiteboard use, as our informal studies found that users are 
hesitant to erase work. Copying content to another surface 
takes time, time that may kill a serendipitous, free-flowing 
conversation. 

To address this problem, Range senses “full boards” and 
moves board contents out to the left and right of the board 
center when it senses a user approaching, clearing a space 
so that the user immediately has a blank space in which to 
write. Data on the edges of the board are not affected during 
the board-clearing maneuvers. 

Clustering Ink Strokes 
In order to move text and graphics around while 
maintaining coherency of the sketches, the underlying 
system needs to have some conception of the semantic units 
of whiteboard contents. To achieve this, we have 
implemented a simple form of stroke clustering, using the 
stroke’s timestamp (time of creation) and location on the 
board (estimated by its bounding box). As strokes are 
created, the Range system runs a clustering algorithm in the 
background: strokes that were either created at the same 
time (temporal locality) or that are close together on the 
board (spatial locality) are clustered together automatically. 

Users are given feedback about the clusters, by way of 
dotted light-gray bounding boxes, when they are located in 
the personal zone. Users manipulate clusters as an atomic 
unit: selecting one stroke in a cluster selects them all by 
default, and moving a stroke in a cluster moves the whole 
cluster. Users may override the automatic clustering by 
lasso selecting one or more strokes, which puts all of the 
selected strokes into a new cluster. 

IMPLICIT INTERACTION TECHNIQUES 
The designs of the three aforementioned features illustrate 
the implicit interaction techniques of user reflection, system 
demonstration, and override. These features do not 
necessarily form an exhaustive set of implicit interaction 
techniques, but they provide characteristic solutions to 
interaction problems typical of ubiquitous computing [1].  

User reflection 
User reflection is how the system indicates what it feels 
users are doing or would like to have done. User reflection 
seeks to validate inferred input; this validation corresponds 
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with what linguists call “recognition and uptake” [6]. Some 
variations on user reflection are projections, which reflect a 
user’s intent, capability, or desire, feedback, which reflect a 
user’s actions, and feed-forward, which reflect the 
consequences of a user’s actions.  

The trajectory of user reflection in the implicit interaction 
framework’s design space is shown for the example of the 
ambient display feature in Figure 3. It goes from the lower 
left hand quadrant, where the interactive system is 
monitoring and responding to user actions in a background 
fashion, to the upper right hand quadrant, where the 
interactive system proactively calls attention to its 
perceptions, actions or potential consequences. Note that 
the effectiveness of this technique belies the naïve design 
assumption that implicit interactions are created by staying 
beneath notice; rather, by implicitly reflecting its perception 
of the user’s actions and intentions, the interactive system 
can increase the likelihood that it will act in an intuitive or 
desirable manner. 

The range of implicit techniques for reflection can also be 
wider than that of explicit reflective techniques. For 
instance, explicit user reflections tend to be intermittent, so 
they may be interleaved as interacts take turns speaking; 
implicit user reflections can take place continuously, 
providing concurrent information about the actions, modes 
and states they are reflecting. Early spell-checking 
programs, for example, had to be invoked explicitly, and 
engaged the user in an explicit dialogue about potentially 
misspelled words to enable repair. Contemporary spell-
check features, however, run continuously in the 
background, highlighting words that are not in the system’s 
dictionary; users may more easily notice potential errors, 
but the implicit alert of this interaction is far more seamless 
than that of earlier explicit spell-check programs. 

User reflection is particularly important in the design of 
ubicomp systems, because the potential input space is so 
vast that users may have difficulty understanding what 
sensed action or state triggered downstream actions. When 
designing user reflections, it is important to map specific 
features to subsequent acts. It is also useful to perform 
fieldwork to understand what meaning exists for different 
reflection displays in different contexts. Grocery store 
shopping counters [7], for instance, have been designed to 
confer special meaning to the objects placed on the counter, 
but the design is not arbitrary. The counters are located so 
that the placement of objects is in the foreground of both 
the shopper and the clerk, and so that the counter helps to 
obscure those objects that are not part of the financial 
transaction—the bag from the previous store, or your 
handbag, for instance. 

User reflection in Range 
User reflection informed the design of nearly all of Range’s 
features. For example, prototype versions of the ambient 
display mode in Range reflected the physical zone that 
users were detected in by highlighting the resulting mode. 

This lead to confusion, as a stray bystander or blocking 
object could cause the system to transition unexpectedly. It 
took collaborating groups a long time to discern what had 
prompted mode changes. Later versions of the ambient 
display presented a simple four dot diagram illustrating 
what zone people were perceived to be in; this reflection 
made it easier for users to comprehend and repair the 
situation, thus enabling a more fluid interaction. Similarly, 
in the making space feature, some objects are deemed to be 
ephemeral and others to be persistent; inadvertent moving 
or erasing can be prevented by reflecting the inferred intent 
by drawing “pins” on read-only clusters. 

The outlining of clustered ink strokes is another example of 
user reflection in the Range application. The ink strokes are 
implicitly related to one another by their proximity in space 
and time. This behavior is based on a tacit understanding of 
proximity and association, but is prone to error. For 
example, if collaborators draw axes for a graph, and 
subsequently add points to the graph, graph points may be 
neither spatially or temporally proximal to the original axes 
ink strokes, but should still be associated. While a more 
sophisticated recognition system might be trained to 
comprehend graph drawings, Range’s errors are easily 
repaired because the clustered ink stroke outlines give users 
feedback about the systems interpretation of the graph, and 
enables repair before users try to move the graph and find 
that the data points do not follow. 

Ubiquitous computing systems can take advantage of 
context-sensitive cues in performing user reflection. In the 
ink stroke clustering design, for instance, validation occurs 
when Range outlines the clusters as the user steps back. 
This moment is opportunistic because it follows the period 
when the user is actively writing, and should not be 
interrupted, and usually precedes the period when the 
clusters of text might be automatically selected and moved. 

System demonstration 
System demonstration is how the system shows the user 
what it is doing, or what it is going to do. This differs from 

 
 
Figure 3. The trajectory of user reflection (solid line) and 
override (dotted) used in making space. 
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the traditional conception of output in that it is not 
necessarily symbolic, overt, or immediate. When the system 
“demonstrates,” it implicitly asks for the user's attention so 
that it can make a suggestion or request oversight, thus 
reducing the likelihood that it will act in an unanticipated or 
unwanted manner even when its actions are not explicitly 
prompted. Variations of this technique include offers, 
wherein the system projects potential actions, 
demonstration-of-action, where the system overtly presents 
on-going action as they take place or immediately 
afterwards, and demonstration-of-consequence, where the 
system overtly calls attention to outcomes of its actions. 

The trajectory of system demonstration is shown in Figure 
4. Here, system demonstration of Range’s ink-clustering 
feature is illustrated on the implicit interaction framework. 
The interaction starts in the lower right hand quadrant, 
where the system is proactively performing background 
actions (here, the task of recognizing ink clusters), and 
moves to the upper right hand quadrant to indicate to users 
what actions are being taken on their behalf.  

The implicit technique of system demonstration is not 
unique to ubiquitous computing systems; indeed, people use 
demonstration all the time in their everyday interactions 
with one another, exaggerating the presentation of their 
actions–speaking louder, making large showy movements, 
moving slowly–to enable smoother joint activity [7]. 
Ubiquitous computing systems may make use of the fact 
that they have many more potential modes for actuation and 
demonstration than are available in a traditional computing 
environment. For instance, as a rule of thumb, small-scale 
versions of an action (overtly leaning in the direction of the 
door) are implicitly understood as an offer or request to 
perform the full-scale action (leaving). However, the design 
of system demonstrations requires testing with actual users 
to rule out false interpretations. Designing demonstrations 
for new actions also often requires several trials; users often 
do not learn to anticipate an action until they have seen it 
occur several times. 

System demonstration in Range 
System demonstration is employed through the design of 
Range’s features. In Range’s transition from the ambient 
display to the drawing surface, for instance, the animated 
transition of the images and backdrop is a demonstration-
of-action that calls more attention to the mode change than 
a sudden switch between modes would.  This demonstrated 
transition also provides a handle for override, which will be 
discussed in the next section, allowing for more seamless 
negotiation of what board objects should stay active. 
Similarly, the movement of board objects in the making 
space feature needs to occur slowly and smoothly enough 
that users who detect a problem (ink strokes that are mis-
clustered and hence do not move in concert, for instance) 
can more easily remedy the error. 

Demonstration need not take place concurrently with the 
actions that are being demonstrated. In fact, the 
determination of good points to interrupt and alert the user 
to background actions are key to fluid interaction design 
[9].  When Range clusters ink strokes, the outlines for the 
clusters appear when the user steps back into 
move/selection mode. This act serves as system 
demonstration, as the outlines indicate that the mode has 
changed from sketching to editing, how the ink strokes have 
been clustered, and what strokes will shift in concert if 
moved. The timing of the interaction, however, prevents the 
system demonstration from distracting users when they are 
actively working on drawing at the whiteboard. 

Override 
Override techniques allow users to repair misinterpretation 
of the user’s state, or to interrupt or stop the system from 
engaging in proactive action. This usually occurs after one 
of the previous two techniques (user reflection and system 
demonstration) alert the user to some inference or action 
that is undesirable. Although the two are often conflated, 
override is distinct from “undo” because it is targeted at 
countering the action of the system rather than reverting a 
command by the user.  

The trajectories of overrides for user reflection and system 
presentation are illustrated in Figures 6 and 7. Overrides 
always start in the upper right hand quadrant (because users 
cannot repair perceptions or actions that they are unaware 
of) and move to the upper left hand quadrant, where the 
users are exerting explicit control.  

Overrides are often easy to design intuitively, because users 
expect to be able to override things. At the point that users 
see some unwanted action taking place, they try numerous 
ways of trying to override the action; it is merely a matter 
of designing a ubicomp system so that the user’s frantic 
override behaviors are registered as an input. It is possible 
for the designer to design in affordances for overrides—
handles and edges, for example, that the user can grasp, or 
shields that the user can use to perform blocks. The wide 
array of potential affordances for override in ubiquitous 
computing environments can be a blessing or a curse for 

 
 
Figure 4. The trajectories of system demonstration (solid 
line) and override (dotted) used in ink stroke clustering. 
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physical interaction designers; it is important to test to 
make sure both that overrides are intuitive and that the 
number of potentially override-able actions presented at any 
time is limited so that the user is not overwhelmed. 

Override in Range 
The Range whiteboard demonstrates override capabilities in 
several places. In the transition between display and 
whiteboard, users can stop the transition by moving out of 
the proximal zone of active board use. Users are also able to 
“grab” digital content to use it as part of the whiteboard 
contents. They can also employ this grabbing technique to 
stop the motion of objects that are being moved to make 
space in the center of the board.  

The design of feedback displays can double as handles for 
override; for instance, users who perceive a mis-clustering 
of ink strokes by the Range whiteboard can override 
Range’s inferred clusters by redrawing the outline. The 
interaction cost of manipulation or correction is no more 
than it would be without the auto-clustering feature. 

IMPLICATIONS FOR DESIGN AND DESIGN RESEARCH 
Implicit interactions enable people to communicate 
efficiently, but understanding how to design effective 
implicit interactions requires more of designers than 
intuition about how to make things subtle or invisible. 
Indeed, in designing implicit interactions for the Range 
whiteboard we found that implicit interactions often rely on 
the counterintuitive strategy of calling attention to observed 
or inferred perceptions and prospective or on-going actions.  

Our analysis of Range shows how the implicit interaction 
framework provides a significant contribution to prior 
models for implicit interaction [2]; without the key variable 
of initiative, it would not be possible to distinguish user 
reflection techniques from that of system demonstration 
techniques, or indeed, to map the role of override. In 
addition, this model helps to show important difference 
between designing static objects that utilize what a user 
already tacitly knows [24] and designing interactive objects 
that proactively engage the user; it is important for 
implicitly interactive objects to draw attention in a non-
exclusive and time-sensitive fashion–something that 
designers of intuitive hammers do not have to worry about. 
Finally, this framework is generative, providing designers 
with patterns and templates that are crucial in creating low-
cost response routines for “smart” systems that perform 
recognition and proactive action [13]. 

The implicit interaction framework helps designers to track 
and analyze interaction sequences along the critical 
interaction variables of attentional demand and initiative. 
The key implication of this framework for designers is that 
design solutions can be based on patterns of interactions 
rather than conventions of domain or context. This means 
that implicit interaction techniques developed for one 
domain can be generalized and applied analogously to 
another domain.  

This, in turn, implies that design researchers might go 
beyond the profiling of context-specific aspects of various 
domains by studying interactions with an eye towards 
developing effective and generalizable interaction 
techniques. The strategies of user reflection, system 
demonstration and override are likely to have many more 
variations than those noted in this paper. Design researchers 
may be able to broader the understanding of implicit 
interactions further, discovering new interaction trajectories 
and characterizing their usage.  

CONCLUSION 
Implicit interactions are evident in the design of everything 
from automatic spell-checkers to interactive robots. By 
explicitly articulating how, when and why an interaction 
designer might use implicit interactions, we widen the 
designer’s range in designing for challenging new domains 
such as ubiquitous computing.  

In this paper, we have provided a proof-of-concept toward 
this goal by applying the implicit interaction framework to 
the design of an electronic whiteboard application, Range. 
Range’s design is targeted specifically to the needs and 
practices of informal meeting participants, and yet the 
framework allows the interaction design techniques used in 
Range to be generalized to inform the design of implicit 
interactions in analogous domains.  

This work provides a common basis for interaction 
designers to explore and share the range of implicit 
interactions and techniques. We provided a framework for 
better understanding the range of implicit interactions, and 
illustrated how implicit interaction techniques can be used 
to prevent, mitigate and correct the problems of proactivity 
in the area of electronic whiteboard design. The intent of 
this work is to provide interaction designers working a wide 
variety of disparate domain- and task-specific ubiquitous 
computing systems with a framework that allows them to 
build on each others’ patterns and techniques. This can 
enable designers to better develop more sophisticated ways 
of implicitly interacting with systems in everyday life. 
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