Is Semantic Technology making things worse?

Preliminary answer: yes!

Christoph Bussler (speaking for myself)

International Workshop on Service Composition & SWS Challenge (SerComp & SWS Challenge '07)

November 5, 2007, Silicon Valley, USA

Goals and Promises of the Semantic Web (Technology)

- Seamless interacting agents (people, services)
 - Based on reliable communication
 - Uniform data and process semantics
- Overcoming heterogeneity and interoperability problems in data and processes
 - Dynamic and automatic discovery / composition combined with data / process mediation
- Achieving semantic correctness and dependability
 - Including trust and explanation of reasoning results

Goals and Promises of the Semantic Web (Technology)

- Main goal is semantically correct interoperability
 - Not just on the user interface, but end to end (!)
 - Machine-understanding is important, too
 - In the future, but not essential today
 - Automatic (service) discovery is not the most important problem for quite a few quarters ahead

11/5/2007

Meaning of "End-to-End" – UI

Examples (I)

- Address
 - If country == "Ireland"
 - Then address must not have zip code

Examples (I)

- Address
 - If country == "Ireland"
 - Then address <u>***must not***</u> have zip code
- "Must not"
 - Don't ask for it on user interface
 - Don't ask for it in any B2B or EAI connection
 - Don't store any zip code value except maybe "n/a"
 - If values are provided then cause an error or an exception or (consistently) ignore the values

Examples (II)

- Date
 - If date is in Japanese context
 - Then year can be Gregorian or Imperial
- Gregorian or Imperial means
 - Value for this year either 2007 or 19
 - Or 1 if change in Era
 - For example, January 7th, 1989, area changed from Showa (64) to Heisei (1)
 - Additionally, the complete Imperial date has an identifier for the Era

Examples (II)

Examples (III)

- amazon.de and amazon.com
 - For adding addresses in DE and US different drop down lists for countries are provided. Entries corresponding to locale ("Irland" vs. "Ireland")
 - Values of entries (!) are stored in address book, not enumeration index in drop down list
 - If you select 'Irland' in amazon.de, then 'Irland' shows up in the address in amazon.com, without the 'e'

Examples (IV)

- Ordering process

 "Free" parts
- Shipping process
 - Shipper tracking number

Examples (V - highlight)

- Parking
 - 1 USD per 20 Minutes
 - 15 USD max per 24-hour period

Examples (V - highlight)

Examples (V - highlight)

1 USD per 20 minutes 15 USD max per 24-hour period

Interoperability

- If two systems, components, etc. "exchange" data, then both should have the same understanding
 - Date or address, line item or shipping number
 - End-to-end
- Major problem
 - Pass-by-value does not pass on the 'constraints', but only the structure / values of data

Interoperability

- Pass-by-value
 - How should a 'downstream' component realize that Imperial dates are valid data values?
 - How should a 'downstream' system realize that the first digit is missing from the tracking number?
- All mapping approaches are based on data structure and pass-by-value today
- Happy to hear that Semantic Web Technology solves this problem as its goal is semantic interoperability
 - How?

Semantic Web Technology Cloud

RuleML				R	DF	W	SMO		
Oracle 11g		OWL			SAWSDL			Сус	
	PS	L							
	SparQL		XML	-	Proté	egé	F	RDFS	
		Sesame	OWI			Jena	10		
Hakia	KAON2	DAML			-S	FoaF	IR	IRS III	
	OIL	SWRL	JeromeDL		Power	rset	Swoogle		
				RDF	a				

. . .

- Layers
 - Functionality abstraction
 - Functionality separation
- Technology specialization
 - Domain specific languages and technologies are developed for the specific layers leading to conceptual distance
- 7 layers generally accepted
 - Can be found in real systems
 - Are supported by dedicated technology
 - Popular non-enterprise stack is "LAMP"

- 7 Layers in general software architecture
 - UI (User interface)
 - UID (User interface driver)
 - BL (Business logic)
 - BR (Business rules)
 - BP (Business process)
 - BO (Business object)
 - PS (Persistence system)

- 7 Layers in general software architecture
 - UI (User interface)
 - UID (User interface driver)
 - BL (Business logic)
 - BR (Business rules)
 - BP (Business process)
 - BO (Business object)
 - PS (Persistence system)

- Example implementation technologies
 - Layout: Jsf
 - Dialog: Jsf configuration
 - Manipulation: Java
 - Rules: Jess
 - Workflow: BPEL
 - Persistent object: JPA
 - Database: Postgres

- 7 Layers in general software architecture
 - UI (User interface)
 - UID (User interface driver)
 - BL (Business logic)
 - BR (Business rules)
 - BP (Business process)
 - BO (Business object)
 - PS (Persistence system)
- Integration
 - UI and UID replaced by B2B interface and protocol

- Example implementation technologies
 - Layout: Jsf
 - Dialog: Jsf configuration
 - Manipulation: Java
 - Rules: Jess
 - Workflow: BPEL
 - Persistent object: JPA
 - Database: Postgres
- Integration technology
 - RosettaNet

- Data type system
 - Each implementation technology in each layer has its own data type system
- Data model
 - Some components have their own data model defining 'some' semantics like 'date'
- Execution model
 - Each technology in each layer has its own execution model

- Constraints
 - E.g. Irish addressed must not have zip codes
 - In BL? BR? PS? BO?

• Constraints

- In BL? BR? PS? BO?

- UI-based system
 - Constraints implemented in UI

- Constraints
 - In BL? BR? PS? BO?
- Integration
 - Constraints implemented in layers equivalent to UI and UID

B₂B

- Constraints
 - In BL? BR? PS? BO?
- Reuse
 - If BO component is shared the constraints must be in this component

• Constraints

- In BL? BR? PS? BO?

- Semantic interoperability across layers and systems
 - Constraints must be implemented in all layers, UI, UID, BL, BR, BP, BO AND PS (!)

User

Analysis

- Semantics to be implemented in all layers

 Consistently
- Pass-by-value and transformation
 - Deals with data structure and values only $\ensuremath{\mathfrak{S}}$
- Suggestion by SW community
 - Use RDF for communication

Analysis

- Problem 1: still only data structure and values
- Problem 2: number of mediations required

- 4 mediations per interface = 24 total for one round-trip from UI to PS
 - Significant number of mediations (!)

Analysis

- RDF as communication language between two components
 - Causes 4 transformations between up to 3 languages
- Still requires constraints to be implemented consistently in all layers
- Wait, what about SWT?
 - No difference

 as SWT follows the layer and component architecture

Naïve Solution

- Do not pass-by-value, but pass-by-reference
 - Avoids data structure and value mediation
- Lot's of problems remain to be solved if RDF (or any other language) is used
 - Common representation is a plus
 - Constraints still not captured
 - Concurrency?
 - All layers must be able to operate on RDF
- BTW, original Scientific American article tried to convince that all layers understand RDF
 - And follow-up article tried to convince that data standards (with their constraints) are important, too

Back-to-Basics Approach

- Parameter passing
 - Is parameter passing the adequate approach to achieve semantic interoperability?
- Constraints location
 - Constraints are part of the data definition (not separate)
 - Constraints are passed within parameters automatically
- Alternative
 - Separation of data and control flow between layers
 - No passing-by-value, but passing-by-reference

Back-to-Basics Approach (I)

Back-to-Basics Approach (II)

User

11/5/2007

Back-to-Basics Approach

- Address
 - If country == Ireland selected, then BO does not accept zip code values from any layer
- Date
 - If '17' is provided for the year field then system can ask back in every layer if 2005 or 1942 (or any other valid era is meant)

- Selector List
 - User selection returns index into list of countries (i18N data is maintained separately)
- Ordering process
 - Manufacturing order is a separate BO than sales order (clear separation)
- Shipping process
 - Passing tracking number by reference itself solves the problem

Summary

- Current SWT efforts ignore industrial application system architecture and programming completely
 - And surrounding eco-system as well
- Programming model is necessary
 - Rethink programming and architecture approach?!
- If SWT is the proposed solution
 - Must fit into existing frameworks
 - Or has to establish own complete (!) programming framework

Thank You