
Peering

80 	 Published by the IEEE Computer Society	 1089-7801/09/$26.00 © 2009 IEEE� IEEE INTERNET COMPUTING

O utside of computer science, semantics is the
providence of philosophy, where we talk
about what we mean when we talk, as well

as ontology (what there is to know) and episte-
mology (how we know it). The nice thing about
computer science is that, in contrast to philoso-
phy, we can establish whether different represen-
tations make a computational difference. That’s
what makes what we do engineering/science.

It’s All Just Syntax, Isn’t It?
That’s what skeptics say when we try to apply the
concept of semantics to computer science. One
reason they do, at the risk of building a straw-
man argument, is that people often throw the
word “semantics” around in computer science
loosely these days, often denoting only a par-
ticular syntax. In particular, discussion of the
Semantic Web often refers only to using either
RDF or OWL-S. As I wrote in 1998 in response
to much published hyperpole, XML wasn’t going
to save the world because it was only a syntax.1
It lets us encode some semantics, but it doesn’t
provide them. So, I’m sympathetic to the syntax
question to a certain extent. But it’s not the end
of the story.

I’m not fond of using Wikipedia as an author-
ity, but it’s useful to read the description there of
semantics in computer science. The usual mean-
ing of “semantics” as intended in the discussion
of the Semantic Web and Semantic Web services
(SWS) is that of “axiomatic semantics.”

Two years ago, Martin Hepp wrote in this
space about the different meanings of “ontolo-
gies” in different camps (“Possible Ontologies:
How Reality Constrains the Development of
Relevant Ontologies,” Jan./Feb. 2007). However,
if we’re really talking about the Semantic Web
and SWS, I insist upon nailing this down to axi-
omatic semantics. Otherwise, our discussion is
ambiguous and thus unscientific (C. Petrie, “No
Science without Semantics,” Jul./Aug. 2007).

How can we be doing computer science if we’re
using fuzzy concepts that don’t make a compu-
tational difference?

The idea of axiomatic semantics is that we
constrain the use of a vocabulary (a set of dis-
tinguished terms) not only by the hierarchical
relationships among the terms in a taxonomy
but also by axioms that tightly constrain the le-
gal inference using these terms. A formal ontol-
ogy is a set of such terms — that is, a taxonomy
and axioms (which might include inheritance of
properties within the taxonomy).

When using formal inference with a formal
ontology, any inference consistent with the axi-
oms is okay. The whole set of possible consistent
ramifications and interpretations comprises the
ontology’s semantics. The trick is often to inter-
pret the relations used in such an ontology.

More Semantics Is Better
for Responding to Change
Is it still all syntax? Well, ultimately yes, but
this is the wrong question to be asking. The
right question to be asking is whether our rep-
resentation makes a computational difference.
And when we constrain the computation to be
consistent with the axioms, we make a differ-
ence. The more tightly constrained the use of
the terms, the more we have formal semantics
for them.

Various frameworks and schemas can pro-
vide semantics. An article by Amit Sheth, Cartic
Ramakrishnan, and Christopher Thomas2 can
help us begin understanding that XML Schema
offers only a starting point for representing se-
mantics, and description logics offer more. A
W3C specification such as OWL-S builds on top
of RDF, which is built on XML, but other options
are available, and, of course, first and higher-
order logics let us express more.

This isn’t the end of the story, either. Now
we must determine what to express. In any par-

The Semantics of “Semantics”

Charles Petrie • Stanford University

SEPTEMBER/OCTOBER 2009� 81

The Semantics of “Semantics”

ticular application, is it useful to
have so constrained the terms? Are
they constrained enough? This is
the heart of knowledge engineering:
finding the right representation. But
how do we know?

I’ve argued before in this column
that the proper way to view (formal)
semantics is as an advanced software
engineering technology (“It’s the Pro-
gramming, Stupid,” May/June 2006).
Anything you can do in semantics
once you can do just as well in Java
programming. A start to knowing
if you have good semantics is to see
whether you’ve solved the problem
via testing. Then, you can find out
whether you’ve done at least as well
as someone hard-coding the solution.

But semantics should be more
flexible, or it has no obvious seman-
tics over traditional software en-
gineering techniques. A good C++
programmer will always beat some-
one using complicated ontologies
and logic in building a specific pro-
gram, one time. But for some classes
of complex programs — and changes
to which a programmer has to adapt
— we should be able show that se-
mantics has an advantage, yes?

I should explain that many se-
mantics proponents (and I am one)
say that semantics permits or fa-
cilitates reuse and interoperability.
My view is that this amounts to less
programming in response to change.
If my system can talk with yours or
repurpose an ontology with little if
any change, then this means that
less programming was required to
adapt to changing conditions. That’s
the general principle.

Advocates will also note that we
can use semantics to answer queries
that simple keyword searches can’t.
For instance, what is the oldest
Western university not founded by
monks? Or, to take an example from
the Semantic Web Services Chal-
lenge (SWSC; http://sws-challenge.
org) set of shipping and discovery
scenarios, what shipper, or combi-

nation of shippers, is required to
move my 25-lb package from New
York City to Tashkent by 5 p.m. lo-
cal time Tuesday?

Again, a programmer could write
a program that would find the ap-
propriate shipper (or university),
perhaps even screen-scraping from
Web sites. And that programmer
could write a new program for some
other kind of logistics task. But the
hope is that the programmer could
reuse the semantics for time and
location, at least, for this new pro-
gram. Again, the general principle is
that semantics should be a superior
software engineering technique. In
the extreme case, no new program-
ming should be needed, as is the case
with keyword search today, but this
particular hope should be tempered.

Some Known Hard Issues
A common vision is that all Web ap-
plications will use open semantics
(perhaps derived from less semantic
sources with some kind of Web 2.0
methodology). Some of us don’t be-
lieve in this vision, not because it’s
too hard to do but because we doubt
that the same representation can be
used for all purposes. This is the im-
port that I take from Drew McDer-
mott’s “Critique of Pure Reason.”3

It’s also what some of us take
from the Noy and McGuinness meth-
odology of ontology development.4
Munindar Singh especially has com-
mented on this.5 All this doesn’t
mean that semantics can’t be useful
as a software engineering technique
— only that we should remain skepti-
cal of claims of universal interoper-
ability and reuse. However, within
some restricted domains, semantics
could prove very useful.

Christoph Bussler and I expect
that such domains might well be in-
dustrial — that is, occuring in “in-
dustrial service parks,” with some
interoperability in the future (“The
Myth of Open Web Services,” May/
June 2008). This does beg the ques-

tion, though, for what set of prob-
lems might a common representation
be useful? Let me duck that one by
saying that we can usually surmise
informally what those might be and
confirm this with some testing. A for-
mal answer awaits those who would
like to research this meta-problem.

Trading One Issue for Another
I got rid of the problem of defining
semantics as opposed to syntax by
saying it’s a continuum that im-
proves software engineering for a
large, complex set of programming
problems — in particular, large sys-
tems that have to adapt to change. Is
this a testable hypothesis?

At this point, I must confess the
short answer is “not yet.” Should you
be shocked, let me explain why, and
why this isn’t such a bad result.

Let me go back to the subject of
“ontologies” for a moment. There
is, at least in the AI community, a
notion of modeling that’s different
from that of the software engineer-
ing community. In the latter, it’s
typically the software system that’s
modeled, not the task domain per se.
When you want to change the pro-
gram, to adapt to new circumstanc-
es, you change the software model.

In the AI community, we model
a task domain more or less directly
in logic, using an ontology. Then, we
execute the logic using some com-
putational logic language, possibly
compiling this program to achieve
efficiency. When we want to adapt to
new circumstances, we might have
to somehow improve our domain
model, but nothing should change
with respect to what we’d usually
call code.

In such computational logic, dis-
tinguishing between the declara-
tive statements and the rules that
use them is easy. Then, we could say
whether a change in a program, in
order to adapt to a change, necessi-
tates simply adding more statements,
changing the existing statements,

Peering

82 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

or changing the logic model’s rules.
This would be a good indication of
the representation’s adaptability. We
can imagine comparing different
computational logic models to one
another with respect to changes in
the model.

We can’t use such distinctions
when comparing the logic-based
technique to other software engi-
neering techniques.

In the software engineering com-
munity, some kind of programming
model, less general than logic, is of-
ten specialized by the programmer to
create a domain-specific model. UML
is such a programming model: it can
be used for a specific problem and
then compiled into an executable.

Such a model might look noth-
ing like logical rules and statements.
Now, what is data and what are
rules? And was the model harder to
change? What if it is graphical and
you just move around a few icons
and recompile? Can we even say that
it isn’t “semantic”?

So, we might try to move to a
more general measuring technique.
We did this in the SWSC. We’ve
resorted to the “surprise problem”
methodolgy. If you’ve solved a pub-
lic problem, you’re invited to solve
a new version of that problem. We
freeze your existing code and give
you the new version a short time be-
fore the workshop. In the workshop,
we evaluate whether you managed
to solve the new version. (We also
look at your new code, comparing it
to the old, but this isn’t part of the
formal metric.)

So, now we have a method for de-
termining how semantic your code is
by how well you responded to the fast
change challenge. Oh, wait. If you’re
a really great Java programmer,
maybe you can just write a new pro-
gram solving the new problem faster
than I can change my logic-based
program. The equivalence class of
programming techniques able to
quickly adapt to a change might de-

pend heavily on the programmer.
I don’t like time-based tests. I

would rather have a more objective
measurement of code change, but
our SWSC community hasn’t been
able to discover a common one. At
least we’re timing the programmer
rather than the code execution time.
These days, execution performance
is overrated when you realize that
increasingly complex and intercon-
nected programs require a human
programming cost that might not
scale at all. But timing programmers
is a poor technique — it’s just that,
like democracy, it seems to be the
only way forward right now.

The good news is that at least
we’ve reduced the problem to a gen-
eral software engineering one. If we
can say anything about whether one
programming technique is better
than another with regard to adapt-
ability, then we ought to be able to
determine whether, say, logic-based
programming is better.

The not-so-bad news is that the
problems that we’ve posed so far in
the SWSC are probably not yet suf-
ficiently complex, or perhaps seman-
tic. We likely need to expand the
shipping and discovery scenarios
and indeed the whole set of supply-
chain scenarios. Building up such
problems, building programs that
solve them, and testing changes
could be so difficult that we probably
won’t get around to doing this for a
long time.

That doesn’t mean we won’t.
We’ll keep trying as long as we
can sustain the effort. And as en-
terprises form large interlocking
programs running over the Inter-
net that must adapt to change, it’s
increasingly likely that semantics
will be the only software engineer-
ing technique that will work. That
is, the richer the semantics (though
possibly in a lightweight, less-ex-
pressive framework), the more likely
that programming can scale to meet
the need for flexibility.

T he bottom line is that I claim that
the only proper measurement of

semantics is as a software engineer-
ing technique, and semantic tech-
nologies should be evaluated as such,
and against all software engineering
techniques, if our community is to
have any credibility. The only way to
do this is via some method that tests
the difficulty of modifying applica-
tions in response to changing condi-
tions or requirements, which might
include the need to interoperate with
other applications. If we don’t test
such adaptability, then the evaluation
is less meaningful, especially to the
community skeptical of semantics.�

References
1.	 C. Petrie, “The XML Files,” IEEE Internet

Computing, vol. 2, no. 3, 1998; www-cdr.

stanford.edu/~petr ie/online/v2i3-web

word.html.

2.	 A. Sheth, C. Ramakrishnan, and C.

Thomas, “Semantics for the Semantic

Web: The Implicit, the Formal, and the

Powerful,” Int’l J. Semantic Web & Infor-

mation Systems, vol. 1, no. 1, 2005, p. 18;

http://knoesis.wright.edu/library/down

load/SRT05-IJ-SW-IS.pdf.

3.	 D. McDermott, “A Critique of Pure Rea-

son,” Computational Intelligence, vol. 3,

no. 33, 1987, pp. 151–160.

4.	 N.F. Noy and D.L. McGuinness, Ontol-

ogy Development 101: A Guide to Cre-

ating Your First Ontology, tech. report,

Stanford Univ.; http://protege.stanford.

edu/publications/ontology_development/

ontology101.pdf.

5.	 M.P. Singh, “Tools for Pragmatics: Meta-

data for Nothing; Ontologies for Free?”

www.csc.ncsu.edu/facult y/mpsingh/

papers/positions/Singh-meaning.pdf.

Charles Petrie has been a senior research sci-

entist at Stanford University since 1993.

His research interests include concurrent

engineering, virtual enterprise manage-

ment, and collective work. Petrie has a

PhD in computer science from the Univer-

sity of Texas at Austin. He is EIC emeritus

and a member of IC’s editorial board. Con-

tact him at petrie@stanford.edu.

