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A variety of software tools have been developed to facilitate con-
struction of agent-based systems. JATLite is a tool that lets users
quickly create new systems of typed-message agents,1 which are

defined in terms of agent communities that perform a distributed com-
putation using typed messages of an agent communication language (ACL)
like the Knowledge Query and Manipulation Language (KQML),2 in
which some semantics are defined prior to runtime. These typed-message
agents must be able to volunteer messages that are not in direct response to
a query; in fact, they are agents only to the degree that removing this ini-
tiative—by restricting communications to a client-server protocol—
impairs the joint computation. 

This “sliding scale” definition is distinctly operational. It does not
depend on subjective measures of autonomy, sensing, or intelligence; nor
does it rely on a notion of “doing something for the user,” a notion that
does not distinguish agents from most computer programs. The defini-
tion does assume that users can tell if their computational results are bet-
ter or worse. (It also implies that not all systems built using tools like
JATLite are necessarily agent-based.)

Agent tools that emphasize ACL communication, like JATLite, typi-
cally provide essential functionality such as an ACL parser, an agent iden-
tity/address directory—usually called an agent name server (ANS), and
direct message exchange through TCP/IP socket transport. Agents com-
municate with each other by looking up an IP address on the ANS and
making a connection with the desired agent. JATLite enhances this
approach by making it unnecessary for each agent to track the IP address
of other agents. Instead, an agent message router (AMR) ensures that a
distributed computation dependent on messages is not disrupted by lost
messages; the AMR allows agents, especially applets, to change IP address-
es during a computation.

JATLite provides the communication functionality for agent systems
with no other restrictions. It is agnostic about the agents’ internal archi-
tecture and construction (for example, imperative or rule-based). It is also
agnostic about whether the agents are mobile.

In this article, we describe the JATLite system, focusing on general
problems of agent-based system development that it was designed to
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address. We have prepared a brief survey of related
systems, “ACL-Based Agent Systems,” which
appears separately in IEEE Internet Computing’s
companion webzine, IC Online, at http://comput-
er.org/internet/<<Add permanent URL>>.

JATLITE MOTIVATIONS
One of our earliest motivations was to address the
lack of “foreign agent” connection standards. Above
the layer of standard Internet protocols, such as
TCP/IP, the agent community has found it difficult
to agree on standards. In the KQML developer
community, there is even a view that this issue
should not be defined at the language level, but we
disagree. Standardized connect/register performa-
tives support reliable connections between different
agent systems, and low-level connections between
agents allow a more task-oriented dialogue. 

The newer Foundation for Intelligent Physical
(FIPA) ACL3 standards based on interoperability
tests are a welcome change with which we agree.
However, JATLite was designed to meet two
requirements that are still lacking: 

■ Reliable message delivery. Some tools address the
issues of lost messages in terms of the individ-
ual agent coordination strategy, but there has
been little attempt to devise a safe, correct, and
robust architecture for reliable message deliv-
ery. 

■ Migrating agent communication. Java applets
were initially restricted to making TCP socket
connections only with the server that spawned
them. Thus, applets could not be typed-mes-
sage agents, which must be able to communi-
cate with any other agent using the standard
ANS mechanism. Even the current trust mech-
anism for applets requires special user inter-
vention to anticipate which applets may be
trusted and what capabilities they can have.
And since the point of Java applets is to build
upon a ubiquitous infrastructure, we did not
want to depend upon client-side installation of
special mobile agent software.

Meeting these requirements does mean that some
additional performatives are needed and so JATLite
functionality and ACL elements remain novel even
after three years.

OVERVIEW OF JATLITE
JATLite consists of Java classes and programs for
creating new systems of typed-message agents that

communicate over the Internet to perform a dis-
tributed computation. The agents may be either
new or “wrapped” legacy software; they send and
receive messages using KQML, an early ACL stan-
dard, although other languages such as FIPA’s ACL
can also be used. 

Like earlier KQML application programming
interfaces (APIs), JATLite does not endow agents
with specific capabilities beyond those needed for
communication and interaction. It provides front-
end templates for communication with other
agents; developers use the templates to add software
that defines agent reactions to received messages.
Figure 1 illustrates the wrapper concept in the
JATLite infrastructure. JATLite templates provide
all of the message communications part of both
new Java agents and the wrapper for legacy code,
as well as an infrastructure for managing message
communications.

JATLite does add basic infrastructure function-
ality over and above that of earlier systems, sup-
porting buffered-message exchanges and file trans-
fers with other agents on the Internet (some of
which may be Java applets), as well as connection,
disconnection, and reconnection in the joint com-
putation. 

The Agent Message Router
JATLite’s most novel service is the AMR, which
allows agents to fail and recover, to migrate, and to
be applets. A traditional ANS only provides the
address of an agent upon request from another
agent. Individual agents are responsible for keep-
ing track of the IP addresses of all other agents with
which they correspond. In addition, they must
handle message failure, whether the failure is caused
by a changed IP address or a simple failure of the
intended recipient agent software; such handling
includes recovery of messages by a restarted agent.
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code
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connect
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Figure 1. JATLite infrastructure. 
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Message buffering. In contrast, the AMR buffers
and forwards messages on a file system, like an e-
mail server. Each agent makes a single socket con-
nection to the AMR (this is the only IP address
each agent knows, besides its own). The AMR then
forwards the message to the recipient’s correct IP
address. If the recipient agent has no active socket
connection, the message is delivered when it does
connect again. The messages are saved on the AMR
until the recipient agent sends a delete signal. 

This simple idea eliminates lost messages caused
by temporary agent failure, along with the necessi-
ty for agents to track IP addresses and the restric-
tion on applet communications. It gives an agent
the flexibility to control its process and to coordi-
nate outgoing messages. For instance, if an agent
expects to take a long time to process a message, it
may not want to accumulate messages in its own
memory. The agent can disconnect from the AMR
at will, and the AMR buffers received messages
while the agent is disconnected; when the agent
reconnects, the AMR sends the buffered messages
to the agent. The buffered messages are deleted
from the file system only on request from the recip-
ient agent. Also, the agent can always send a mes-
sage to other agents, regardless of the receiver’s con-
nectivity, just as you can send e-mail to someone
without knowing if they are currently connected.

As long as an AMR is installed on the server that
spawned a Java applet agent, that agent can use the
AMR forwarding mechanism to exchange messages
with any other registered agent. This scheme vio-
lates no browser security mechanism and requires
no special setup on the user’s part. The user can sim-
ply click on the URL for the agent applet, down-
load it, connect to the AMR if the applet does not
do so automatically, read the outstanding messages,
and respond or send new ones as appropriate.

The AMR uses the KQML :receiver field to route
the message, rather than a forwarding special per-
formative. If the receiver is connected to the AMR
and able to accept socket connections (as in the case
of stand-alone applications), the AMR tries to send

the message to the receiver by initiating a connec-
tion. If the receiver is intentionally disconnected or
the AMR cannot initiate a connection (as is the case
in an applet agent connection), the AMR buffers
the messages until the receiver is connected.

E-mail could be used instead of persistent socket
connections but would require each agent to have its
own e-mail address. This poses a system installation
issue that restricts the movement of agents from one
machine to another. Applets would need access to an
e-mail server on the host to which they were down-
loaded. Non-applet agents would need a special e-
mail address to be installed on each host. Firewalls
that prohibit socket connections might not allow
applets and might make e-mail the only reliable
transport mechanism for non-applet agents, thus
restricting Internet functionality, as firewalls do. 

Security. With one exception, JATLite message
security depends on current open standards for
encryption and authentication. The one simple fea-
ture that JATLite adds is a password associated with
the agent name. The AMR allows agents to change
IP addresses. When an agent disconnects or times-
out from the AMR, it may reconnect from a dif-
ferent IP address. To prevent “spoofing”, the agent
must prove its identity by providing a password
from the original registration. This security mea-
sure is not sufficient for business applications or for
more sophisticated encrypted passwords. 

Joerg Schreck of the German National Research
Center for Information Technology has developed
Secure Socket Layer (SSL) message encryption for
JATLite to produce a “mix” for KQML, for use in
so-called “anonymous remailers” and “mixmaster”
e-mail delivery, as described first by David L.
Chaum.4 The mix is a general tool that might be
important for all applications requiring pseudo-
nymity or anonymity; the homepage for
KQMLmix is http://www.KQMLmix.net.

Both the password and the AMR functionality
facilitate migrating agents. Saved messages represent
part of the state of the distributed computation.
This allows the state to follow a migrating agent,
which might be either an applet or application soft-
ware that is executed on different machines at dif-
ferent times. For instance, a mechanical engineer
may want to run the same thermal analysis program
on different computers at different times. Wrapping
this software with JATLite-based code allows the
program to be used with the same identity, playing
a consistent role in the distributed computation, at
different times on different computers.

pull quote here. pull quote here.
pull quote here. pull quote here.
pull quote here. pull quote here. 
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Registration and Connection.
JATLite uses nonstandard
KQML performatives for reg-
istration and connection
(REGISTER/UNREGISTER for
registration, RECONNECT/
DISCONNECT for connection,
and IDENTIFY/WHOIAM for
authentication). Some of
these notions, in particular
REGISTER, can be found in
both the latest KQML and
FIPA specifications. Howev-
er, distinguishing between
registration/connection and
reconnection/disconnection
depends on having the mes-
sage-buffering functionality
of the AMR, and so is not yet
in these specifications. 

Figure 2 shows the se-
quence of message exchanges
for an agent registration. An
agent that wants to register ini-
tiates a connection to the
AMR and sends a REGISTER
message with its name and
password. If there is a regis-
tered agent with the same
name, the request is denied
and an error message is sent.

Otherwise, the AMR
sends an IDENTIFY message to
the agent. The agent must then introduce itself
using the WHOIAM performative, which includes
the agent’s address, description, e-mail address
(optional), and so on. Upon successful registration,
the AMR sends a REGISTER-ACCEPTED message
back to the agent. To unregister, an agent sends the
UNREGISTER performative with its password. If the
password is incorrect, unregistration will be denied.
Once registered, the agent can connect to the AMR
by sending a RECONNECT message with its pass-
word and address. If the address is different from
the previous address, the AMR replaces the address
information. If a connection from the same agent is
still alive, the connection will be disconnected and
a new connection will be established. (Note that a
loss of connection is detected only when a message
needs to be sent to the connection. Once detected,
the connection is closed by the AMR.) An agent
can intentionally disconnect from the AMR by
sending a DISCONNECT message. 

FTP and SMTP support. The AMR also supports
FTP and SMTP for both stand-alone and applet
agents. Using built-in FTP support, an agent can
save and retrieve a large amount of data respective-
ly to and from FTP servers elsewhere in the Inter-
net. SMTP support makes it possible for the agent
to send data, including KQML messages, to any
SMTP server. In both cases, for Java applets the
AMR takes the role of a proxy to create a connector
that links the applet and servers without caching
the data to the AMR.

JATLite Architecture
JATLite exploits Java’s object-oriented nature so
that programmers can extend classes, building atop
the basic template and specializing it for their own
purposes, or omitting Java classes as desired.
JATLite features modular construction consisting
of increasingly specialized layers, as shown in Fig-
ure 3. Each layer can be exchanged with other tech-
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Figure 2. Connection protocol diagram for JATLite. The sequence shows the message
exchanges for an agent registration.
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nologies without affecting the operation of the rest
of the package. Developers can select the appropri-
ate layer to start building their systems. Thus, a
developer who wants to utilize TCP/IP communi-
cations but does not want to use KQML can select
only the abstract and base layers as described below: 

■ Abstract layer—provides the collection of
abstract classes necessary for JATLite imple-
mentation. Although JATLite assumes all con-
nections to be made with TCP/IP, the abstract
layer can be extended to implement different
protocols such as UDP. (Note: TCP/IP socket
connections are a multithreaded operation,
with multiple server sockets and message receiv-
er sockets with socket connections being per-
sistent and having timeout provisions.)

■ Base layer—provides communication based on
TCP/IP and the abstract layer. There is no
restriction on the message language or proto-
col. The base layer can be extended, for exam-
ple, to allow inputs from sockets and output to
files. It can also be extended to give agents mul-
tiple message ports.

■ KQML layer—provides for storage and parsing
of KQML messages.

■ Router layer—provides name registration and
message routing and queuing for agents via the
AMR.

■ Protocol layer—provides several open Internet
protocols such as FTP and SMTP.

The reader may wonder why the KQML layer isn’t
on top of the router to facilitate the use of other
languages. First, no good alternative ACLs existed
when JATLite was originally designed. Second, all
other typed-message systems used an agent-to-

agent direct connection technique, so we made the
router optional; this meant that KQML seemed
more basic than the routing functions. Further-
more, the router depends upon ACL parsing pro-
vided by the KQML layer.

A more technical reason has been the lack of
consensus on an administrative protocol. The pro-
tocol is different for KQML, FIPA, and other
implementations, yet it should be in the router
layer, which is the layer that makes connections and
transfers messages. This makes it more difficult
than it first appears to have a router layer that
would interoperate among different ACLs and
agent management systems. 

At the AI Lab of the Swiss Federal Institute of
Technology (EPFL), Monique Calisti and others
building JATLite applications have developed a
FIPA ACL parser and router for JATLite. The
homepage for their work is at http://liawww.epfl.
ch/~calisti/intagents.html. 

It may also seem unintuitive for the protocol
layer to be on top. But the protocol layer needs to
use the router as a proxy for applet agents. FTP,
SMTP, and other Internet protocols must open a
socket to a host other than the host from which the
applet was downloaded. But security restrictions on
applets generally restrict such connections, so the
router must be used as a proxy. Therefore, the pro-
tocol layer contains the agent-side code that uses
router functions.

System Assumptions and Limitations
JATLite can run on any platform that supports the
Java development kit JDK 1.1x from Sun Microsys-
tems. Modifications may be needed for other Java
development environments, such as the GNU free
software Kaffe. Applet agents can be run using any
Web browser compatible with Java 1.1. 

Message delimiter. JATLite assumes TCP/IP as
underlying transport but additionally uses a mes-
sage delimiter, the default being the KAPI \04 char-
acter. This special escape character works only when
declared to be a string. Any other ASCII character
can be used within the message. For instance, a new
line character that is a message delimiter for numer-
ous Internet protocols such as FTP or SMTP can
be a part of a JATLite agent message. JATLite does
not support any transport mechanism that lacks a
specified message delimiter, such as those mecha-
nisms that use a message length indicator in the
message header instead of a terminating character.

JATLite allows an agent to set an expected max-

User access

Protocol layer

Router layer

KOMC layer

Base layer

Abstract layer

Figure 3. The JATLite architecture is a hierarchy of increasingly spe-
cialized layers. Developers can select appropriate layers to begin
building their systems.
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imum message size for each connection to other
agents. JATLite makes no guarantee about message
order. The AMR will distribute messages in the
same order it receives them. It does not inspect tim-
ing stamps to determine if one agent actually sent a
message before another. There is no notion of a dis-
tributed synchronized clock.

Distributed performance. As with any Internet serv-
er, the AMR’s average message processing time may
restrict the speed of the distributed computation.
JATLite is designed for applications in which
agents typically perform significant computation
between messages. If the AMR’s average message
processing time exceeds the average latency
between agent messages, the system will bog down
as messages accumulate on the AMR socket buffer.
So far, our own agent systems perform more like an
e-mail system, so the server is not overrun. How-
ever, it is easy to anticipate systems of many small,
fast-responding agents that would overrun a serv-
er of any given speed. Our preferred method for
dealing with the scaling issue is to add capabilities
that would connect multiple AMRs hierarchically,
much the same as Internet domains. 

Since all messages are assumed to be processed
through an AMR, the JATLite architecture inherits
the chief disadvantage of any server application:
single-point failure. The AMR is vulnerable to both
file system and networking malfunctions. Howev-
er, we believe that diverse, well-proven server tech-
nologies can be applied to the AMR for robust
operation and recovery. JATLite makes no assump-
tions that would restrict such technologies from
being adopted.

A related issue is control over message delivery.
Whenever an agent connects (or reconnects), the
AMR delivers all messages not previously deleted
by that agent. We assume all agents will be able to
buffer their incoming messages and decide—inde-
pendently of the AMR—which to read in what
order. All of our agent applets written in native
JATLite code have such queues.

Compatibilities and incompatibilities. By design,
JATLite is compatible with the older KAPI system.
The JATLite distribution includes a KAPI release
with patches to allow use with a JATLite AMR. We
routinely use KAPI agents.

The newer FIPA system is more problematic for
JATLite. The router layer depends upon KQML
ACL constructs, and so would have to be rewritten
for the FIPA ACL. It may be better to redesign

JATLite to allow greater flexibility at the router
layer. However, anyone can use any part of the exit-
ing code freely, and certainly the principles of the
AMR can be used in any future infrastructures. 

FIPA also defines an Agent Management Sys-
tem. Most AMS functions are already included in
the JATLite router layer. Although FIPA specifica-
tions indicate that AMS functions are performed
by different agents, there seems to be no objection
to a single agent performing them. Finally, current
FIPA specifications simply do not address message

buffering, so they do not conflict with the AMR.
Future specifications may, however. A new version
of the April system, called ICM,5 is intended to be
a basis for a FIPA-compliant AMS with message
buffering and as support for intermittent agents,
like JATLite’s.

The most serious incompatibility between FIPA
and JATLite seems to be on the point of mobility.
There is no direct conflict, but JATLite provides
functionality requiring protocol messages not in
the FIPA specification. In particular, FIPA seems
to assume that if an agent changes an IP address,
then it is a “mobile agent,” and FIPA handles it by
requiring such agents always to have a home sys-
tem that can relay messages to the migrating agent.
This is also the case for ICM: agent names must
include a “home” host name. JATLite is agnostic
on the subject of mobility: the CONNECT perfor-
mative does not care whether the agent moved itself
or was moved manually.

APPLICATION EXPERIENCES
The Java Agent Template6 and JATLite grew out of
experiences with several agent-based engineering
systems starting with PACT,7 an early attempt to
integrate heterogeneous engineering agents using
a common communication language and protocol,
and continuing with NextLink8 and ProcessLink.9

The NextLink system was based on the Shade
KAPI package and revealed several shortcomings
of this approach. The current JATLite package
includes a more robust version of KAPI plus patch-

pull quote here. pull quote here.
pull quote here. pull quote here.
pull quote here. pull quote here. 
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es that allow it to work with the AMR. 
The package has been tested and refined over the

past three years and seems to be as reliable as the
platform on which it runs. In our case, the platform
has been a Sun Sparc running Solaris; the only fail-
ures have occurred when the Sparc was rebooted
and the AMR had to be restarted. Even though
new connections and messages were blocked, no
messages were lost because they were saved on the
file system. 

ProcessLink: An Example
Application
ProcessLink is agent-based technology for comput-
er-aided coordination of engineering teams work-
ing over the Internet. It provides automated tracking
of constraints, goals, conflicts, and dependencies
among team members. The team members interact
through engineering tools, such as CAD programs,
that have been wrapped with JATLite to send and
receive messages automatically. JATLite applets that
support project planning are also available.12 All of
these user-driven agents interact with a special coor-
dination agent, Redux,11 that coordinates the engi-
neering design via a simple ubiquitous design model
based on depth-first search and backtracking.

ProcessLink includes a generic applet for agent
system development. It can display the design as a
Redux goal-and-decision graph. The graph can be
used to answer queries about the state of the design

and also to change the design. Agent messages are
produced either automatically or by hand (one
option lets the user type agent messages character
by character for debugging purposes). Users can run
scripts of predefined messages for testing. 

Other applets are specialized for constraint man-
agement, project management, and special design
functions as desired. Any generic applet can be used
as an individual agent by specifying the user ID and
password. By disconnecting and reconnecting, the
same applet can be used as a separate agent, with a
different message and action. 

The usual agents are applets, stand-alone Java
agents, and engineering software converted into
agents via wrapping with both KAPI and JATLite
code. In addition, we have tested the AMR with an
electronic engineering notebook program. We used
the Personal Electronic Notebook with Sharing
(PENS) HTML authoring system for design doc-
umentation,10 and altered it so that the user can
add structure to the text. The structure is created
by highlighting text and clicking on icons to embed
XML-like tags in the text. When the text is posted,
a proxy agent parses the text and then sends out
corresponding agent messages as if they had come
from one of the existing registered agents, as shown
in Figure 4.

Although this is a form of “spoofing,” the
authentication comes from the HTML authoring
system and the results are very practical: users can
create and send agent messages as a by-product of
documenting their designs. The AMR treats these
messages like any other and passes them on to
Redux, which uses its coordination model to gen-
erate messages that can be sent to other agents. 

Figure 5 shows the overall ProcessLink architec-
ture with an example set of domain-specific agents
using the generic agents as project management and
design resources with JATLite as the agent sub-
strate. Any of these agents can be applets and can
disconnect and reconnect later from a different IP
address. 

ProcessLink supports joint computations that
depend strongly on no loss of messages. If one
agent fails to receive a message that a particular
design change has occurred, it may try to make
inappropriate design decisions. The Redux coordi-
nation agent will prevent inconsistencies and will
inform an agent when and why a design change
cannot be accommodated because of global con-
straints and the interactions of other designers.

The ProcessLink application domain is not a
real-time one. The engineering software and peo-
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Figure 4. PENS-Redux architecture. Authors publish pages with
XML-like embedded tags. The proxy agent interprets the tags as
messages that should be sent to Redux as if they were composed
directly by the author.
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ple that constitute the “thinking” part of the agents
typically have a reaction time of minutes to hours.
The delay time for messages is less than two sec-
onds. The only latency experienced by users occurs
with Java applets themselves when the local host
has too few resources to run them quickly. JATLite
is appropriate for applications where the agents
require significant “think time,” but not for those
requiring simpler, fast-acting, reflex-driven agents. 

Related to throughput is the issue of number of
agents. Our application environment typically
includes fewer than 10 agents contributing to the
engineering project. In a system with significantly
more agents, where typically each agent performs
relatively little processing, one central AMR would
be a bottleneck. We suggest that a federation of
AMRs, such as described in the FIPA specifications
or in existing e-mail servers, will be sufficient, but
for now we can claim only that the AMR is not a
bottleneck for a relatively small group of agents
with large processing times and, further, that this
is characteristic of some large classes of agent sys-
tems, especially in engineering domains.

Our agent-based engineering work using JATLite
has included the development of “agentified” engi-
neering software modules, such as finite element
analysis11 and various CAD tools.12 We have also
interfaced with various ontological tools from the
Stanford Knowledge Systems lab.13 All of these agent
systems were created using JAT or JATLite to add
agent message-passing software to existing engi-
neering tools or software modules created elsewhere.
Some analysis of the software operation was neces-
sary to characterize design decisions. The character-
izations were then automatically parsed into the
appropriate agent messages at runtime.

The strategy of placing the agent communica-
tions management in one AMR rather than dis-
tributed in more complex agents strongly facilitat-
ed the agent-based integration of these systems.
The software development for each agent was not
as complicated as it would have been if each agent
had to be responsible for maintaining its cache of
other agent addresses, for tracking the success
and/or failure of messages, or for incorporating a
scheme that was failure-tolerant. 

We have not yet found another agent infra-
structure that would provide the functionality we
require for such engineering applications. Even the
new FIPA specifications are lacking in this regard,
and the compliant implementations so far do not
include the message-buffering and connect/recon-
nect functions. 

Debugging
Agent systems pose at least three levels of debug-
ging:

■ At the communications level: Are the agents
and the AMR actually sending and receiving
messages when they should?

■ At the ACL level: In the case of JATLite, is each
agent (including the AMR) properly parsing
KQML messages?

■ At the task level: Is each agent parsing each
message’s content properly and acting appro-
priately?

Each level of debugging can be done on each
machine where the agent is running by watching or
logging messages in response to a known good stim-
ulus message. The AMR mechanism facilitates such
debugging because it buffers the messages. If we are
testing one agent, we need not repeatedly run the
other agents involved in the distributed computa-
tion. Once the others have sent their messages via
the AMR, the AMR will resend the messages each
time the agent being tested reconnects. The same
scenario can be replayed indefinitely without the
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Figure 5. ProcessLink architecture for distributed engineering
design. Domain-specific agents use the generic agents as manage-
ment and design resources with JATLite as the agent substrate.
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other agents’ participation and the corresponding
possibility of slightly different messages being sent.

The AMR also simplifies debugging by central-
izing communication management services. Cen-
tralized coordination obviates the need to imple-
ment a coordination scheme for each agent.
Instead, we can rely on the AMR for IP address
caching and message buffering. Centralization also
allows debugging tools to be developed that can
“single-step” message delivery, which is not possi-
ble when each agent is responsible for direct con-
nections and message delivery to other agents.

Such centralized communications support
makes agent development largely a matter of mes-
sage agreement. As the people involved in the pro-
ject change their agents, they post changes only to
the messages to others. They do this by changing
the formal description of the message on a Web
page and publishing notice of the change and the
URL via e-mail. Usually, such a change is preced-
ed by a long discussion among the affected parties.
The process is simplified by the restriction that
agents do not send code, such as methods, to each
other, but only text messages. Other agent devel-
opers change their parsers if needed. 

CONCLUSION
In December 1998, we made JATLite open-source
software available under the GNU general public
license. Users can download the current beta version
from http://java.stanford.edu/ by filling out a form
giving their name, address, e-mail address, and affil-
iation. Over 2,000 researchers from around the world
have downloaded the current version, and are using
or evaluating it to create agent interfaces in a variety of
fields. We encourage users to send technical questions
and comments to jat-develop@cdr.stanford.edu. The
archive of these messages, available at http://cdr.stan-
ford.edu/ABE/java_agent_template/hm/, reveals a
high level of experimentation. There is a JATLite user
forum at jatLite-users@list.stanford.edu. 

We have also developed a C++ JATLite-com-
patible agent template for Windows95 and Win-
dow NT platforms. The C++ versions is easier to
connect to commercial software written in C and
C++ than the native Java version of JATLite, but
we have not released it publicly because we cannot
afford to support it. 

We are currently working with industrial partners
on several issues related to lightweight, but robust
and secure agent communication for applications in
engineering and business. Three points characterize
the novel aspects of the JATLite approach:

■ Performing administrative functions in the agent
language—in the case of KQML, in performa-
tives. The KQML community has frequently
argued that existing performatives, such as Ask
and Tell, could push administrative functions
down into the content language, but content
language varies from application to application.
The point of having a standard outer language
like KQML is to have a single standard for stan-
dard functions. Administrative functions like
registration, connection, and agent identifica-
tion are important standard functions. 

■ Buffering messages as a viable means of robust
message delivery in the face of unstable and
migrating standalone and Java applet agents.
Message buffering also facilitates agent con-
struction because individual agents need not
manage failed communications and the
addresses of other agents. A side benefit is
improved debugging.

■ Using message buffering to support a novel concept
of agent identity. Rather than identify an agent
by a name and IP address, we use a name and
password. Together with the time-stamping of
agent names in JATLite, this method provides
for unique agent naming that allows the agents
to move between hosts at will. 

While the JATLite primitives are only one design,
these principles—administrative functions in the
language, message buffering, and a password-based
agent identity that allows disconnecting and recon-
necting from different hosts—may be used by other
designers, either directly or as criteria in develop-
ing better alternatives. ■
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