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ABSTRACT

This paper presents a calibration scheme and kinematic
mapping to support dexterous telemanipulation. The calibration
scheme is intended for use with an instrumented glove and
permits an accurate determination of the intended motions of a
virtual object grasped between a human operator’s thumb and
index finger. The motions of the virtual object are then mapped
to analogous motions of a scaled virtual object held in a two-
fingered robot hand. A non-linear mapping scheme allows better
utilization of the human and robot hand workspaces.

1.0 INTRODUCTION

The work described in this paper is part of an effort to allow a
general-purpose instrumented glove to be used as an input
device for manipulating objects held in a dexterous
telemanipulator. In this approach, the human operator grasps
and manipulates virtual objects (e.g., between the thumb and
index finger) using the glove. The resulting object motions are
transmitted to a robot hand that performs the manipulations on
real objects. A force feedback device, described in [11], can
relay grasp forces back to the operator. 

This approach has the advantage that it does not require a
specially designed manipulandum or hand master and can be
adapted for used with most robot hands. However, it raises a
couple of technical challenges not encountered when using a
manipulandum. First, a kinematic calibration of each use
hand must be obtained. The calibration should be specialize
obtain an accurate measure of the intended motions of obj
manipulated between the fingers. Second, the intended mot
of the virtual object in the operator’s fingers must be mapped
analogous motions of real objects held in the robot hand. T
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robot may have different kinematics and a different workspa
than the human hand; therefore a mapping from the hum
workspace to the robot workspace must account for th
differences. In the present case, the robot hand is planar, a
particular issue is to account for the non-planar motions o
human hand.

In the following sections we first review related work an
then present a kinematic model of the human hand tha
specialized for thumb/index finger manipulations. The mode
designed for use with the instrumented glove. Next, we pres
a calibration routine for the instrumented glove that quickly a
accurately adjusts the model to fit a particular user. We th
present a mapping from the motions of an unconstrained hum
hand to a non-anthropomorphic planar robot hand. The mapp
is designed so that when a human makes a natural motion 
as rolling, grasping or releasing an object, the robot makes
analogous motion. We present the approach using a partic
two-fingered planar robotic hand and discuss extrapolations
the general case.

2.0 PREVIOUS WORK

The human hand is a remarkably complex mechanism, 
researchers have made various approximations when mode
it for different purposes. In our case, we need a kinematic h
model that allows sensor readings to be mapped to coordi
frames and joint angles; modelling of the tendons or exter
appearance is secondary. Kuch and Huang [8] model the h
with 26 DOF, though they do not present accuracy valu
Rohling and Hollerbach [9] show that the index finger can 
modeled as a kinematic linkage with simple rotary joints w
little loss of accuracy. Kramer [7] presents a kinematic linka
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model of the thumb, though no accuracy results are presented.

Calibrating a model to a particular human hand is necessary
for accurate telemanipulation. Fischer et al. [4] use a vision
based system to track fiducial points on an individual hand,
while measuring the joint angles with a data glove. By using a
neural network, they achieve tip position errors less than 1.8
mm.

The calibration technique described in this paper applies
closed-loop kinematic calibration methods to the human hand,
requiring touching fingertip to thumb. This method was used to
calibrate the fingers of the Utah-MIT Dextrous Robot Hand in
[2], although rolling was not allowed in that case.

When mapping from human hand motions to robot motions,
two principal approaches dominate the literature. In some work,
the hand is placed within an exoskeleton which is kinematically
similar to the robot.[14] By limiting the allowable motions of
the human hand, the transformation to the robot motion is
simplified. In other work, the robot hand is anthropomorphic
and approximately matches the motion of the human
hand.[4][10] Certain difficulties in mapping from human to
robot are avoided, but requires a more complex and expensive
robot hand.

3.0 HUMAN HAND CALIBRATION

3.1 Hand Model

We have developed a sufficiently accurate kinematic model of
the human hand and an expedient means of customizing the
model to a particular user’s hand. Using the models develo
by Rohling and Hollerbach [9] and Kramer [7], observations 
Cooney et al.[3] and Hollister et al.[5], and our empiric
examinations, we have developed a kinematic model which
feel is well suited for measuring and displaying fine fingert
manipulations. In this model, the human hand is converted 
mechanical linkage, with finger bones intersecting in Hooke
pin joints. The model does not take into account effects such
soft tissue deformation or bone-on-bone sliding.

Referring to Fig. 1, the base coordinate system 
convenience is located in the hand at the point where the thu
and the index metacarpal meet. The base frame x-axis po
along the index metacarpal bone, the y-axis is directed outw
from a flat open palm, with the z-axis defined by the right ha
rule.

The index finger is defined similarly to that presented 
Rohling and Hollerbach.[9] The index metacarpophalang
joint has two orthogonal collocated degrees of freedo
abduction (IABD) and flexion (IMPJ). The transforms from the
IMPJ to the IPIJ, IPIJ to IDIJ and IDIJ to fingertip are all defined
such that axes of rotation are parallel.

Modeling the thumb is more challenging. Cooney et al. [
show that even though the metacarpal bone has three mod
d
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motion (flexion/extension, abduction/adduction and pronatio
supination), it only has two degrees of freedom. In other wor
for a given flexion (rotation about the palm) and abducti
(angle between the thumb and palm), the thumb has a un
pronation (twist). Hollister et al. [5] demonstrate that this 
because the thumb rotation (TTR) axis and the thumb abduction
(TABD) axis are non-orthogonal and non-intersecting.

In our model (Fig. 1), we maintain orthogonality fo
computation purposes, and to better match the sen
positioning of the CyberGlove®. The TTR joint is located at the
base of the thumb with the axis of rotation along the index
metacarpal. The TABD axis is offset from and orthogonal to the
TTR axis. In order to account for the thumb pronation, an
unsensed axis is placed along the thumb metacarpal (“TMC

twist”). The angle of this “joint” is a linear function of the
abduction and flexion.

Some hand models [8] place a spherical joint at t
metacarpophalangeal joint (TMPJ). One of the axes of motion,
however, exhibits little motion without being externally force
The “principal” TMPJ axis is parallel to the TABD axis for a 0°
TMC twist. The interphalangeal joint (TIJ) is parallel to the TMPJ.

3.2 Calibration Routine

We have generated a reliable and expedient means
calibrating a user’s hand for use with the CyberGlove®. Proper
calibration to a particular user’s hand is essential for qua
telemanipulation. By developing a routine which can 
performed quickly and accurately each time the device is use
new user can begin to work in a matter of minutes.

The current calibration routine is what we call a “zer
hardware solution,” in which the user places his or her thu
and index finger tips together and maintains rolling conta
while moving the fingers. The computer records 80 distinct d
points with the CyberGlove® sensor values over 40 seconds.

Figure 1.   Kinematic Hand Model
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Because the fingers remain in contact, we can approximate the
hand as a closed kinematic chain with the fingertips in fixed
contact. This is only an approximation because of several
factors, including rolling motion and soft tissue deformation.
This closed kinematic chain has one unsensed joint at the finger-
thumb contact point, with three rotational degrees of freedom.

The error at each data point is the calculated separation
between the two fingers in our nominal kinematic model. We
use a least squares regression iteration to modify the nominal
model to an error-minimizing model for the particular user. The
major advantage of the zero hardware solution is the lack of any
external calibration sensor, such as a vision system, which
would increase complexity and cost.

3.3 Least Squares Fit

Rohling and Hollerbach [9] calibrated the human index finger
using a least squares regression. They directly measured the
position of the index tip using a vision system, which can be
treated as a closed chain with the sensor measurement as the
final link. We performed a similar procedure, using instead a
closed finger-thumb kinematic chain. 

3.3.1 Angular Offset Calibration

After storing N poses, we generate error vectors ∆d from each
calculated index position to the corresponding calculated thumb
position, using the forward kinematics of the hand model. The
hand model kinematics also provide Jacobians, J, relating
infinitesimal joint angle motion to operational space motion;
these Jacobians are functions of the joint angles, φ. These
relations are vertically concatenated from 1 to N to get

 (1)

or, more compactly, , where φn is the set of joint
angles for pose n, θ is a vector of offsets applied to each set of
φn, and C is the matrix of concatenated Jacobians. We can
evaluate a least-squares solution, ∆θ, to this linearized system
using the left pseudo-inverse of C, based on the SVD. At each
iteration step, θ is modified by ∆θ. The values of ∆d and C are
recalculated, using the new θ. The iteration continues until

. An extensive discussion on the numerical stability of
this convergence is presented by Rohling and Hollerbach [9].

Because this calibration generates a scale-independent model,
for this phase of the calibration development we make the
assumption that the ratios of bone lengths to one another are
fairly constant among users. The relative length of each bone is
taken from published biomechanics data.[1] 

∆d1

…
∆dn

…
∆dN

J φ1 θ+( )

…
J φn θ+( )

…
J φN θ+( )

∆θ[ ]=

∆d C∆θ=

∆θ 0→
3.3.2 Including Unknown Sensor Gains

Implementation of the angular offset calibration resulted in
poor accuracy of the modeled hand. Because the CyberGlove®

attaches to the soft tissue of the hand, and due to the nature of
the sensors, the conversion gain from sensor value to angular
quantity is variable from user to user, unlike in an exoskeleton-
type hand master. In addition, some glove sensors are physically
cross-coupled, i.e., sensor values may change due to the
movement of more than one joint.

The solution is to expand the calibration to optimize the
values of the sensor gains, using the relation

(2)

where  is the raw sensor value, and gi is the gain. A new
Jacobian  is formed by adding columns for the new gain
parameters:

(3)

Note that the individual  has linearly dependent columns,
however the concatenated Jacobian matrix  will not, because
each set of sensor readings  is distinct.

In addition, cross-coupling effects can be modeled by
including a cross gain parameter. For instance, the TTR and
TABD sensors are highly cross-coupled between the TTR, TABD,
and TMC Twist angles of the model. The relation between these
two sensors and their corresponding model joints can be
expressed in matrix form:

(4)

To include the cross-coupled nature of these two sensors, we
need six parameters instead of just gTR and gABD. Note that the
TMC Twist parameter has no corresponding σ value because the
CyberGlove® does not measure this type of motion.  is
extended for the cross gain parameters similarly to (3).

 can be further expanded to include relations between bone
lengths and fingertip positions. Bone lengths, gains, and offsets
can then be incorporated into a generalized parameter vector p.
The model calibration can now be optimized in virtually every
relevant parameter. In summary we are now calibrating for:

• nine constant offset parameters of the model: θi
• eight bone lengths, Li
• eight sensor gains, gi
• and four cross-coupling terms,  defined in Eq. (4)

When this revised calibration was performed, the ha
parameters converged quickly to trivial solutions. In one ca
all the gains converge to zero, eliminating all finger motion. T

φi giσi θi+=

σi

Ĵn

∆dn Ĵn
∆θ
∆g

Jn Diag σn( ) J⋅ n
∆θ
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= =
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other parameters converge to a configuration where the finger
offset is exactly zero. Because the fingers do not move, the error
is zero for all sensor readings. In a second case, all bone lengths
converge to zero, similarly eliminating all motion.

One tool for preventing closed-loop trivial solutions is to fix a
gain and length [2]. An alternate method to prevent this
difficulty is the use of a priori estimates, as advocated in [13].
The calibration routine can be further modified to limit
parameter deviation as discussed below.

3.3.3 Limitation of Parameter Deviation

Using a graphical display of the hand model and the default
calibration information which ships with the CyberGlove®, it is
possible to manually adjust the set of parameters θ and g to
produce a visually acceptable representation of the human hand
across a wide variety of users. This type of manual calibration,
however, produces spatial accuracy which is not sufficient for
fine telemanipulation tasks. These values are used as a first
approximation of the physical values, and are used to generate a
nominal “biologically feasible” parameter set from which w
can limit parameter variance. 

To complement our generalized parameter vector p, we
introduce two new vectors, p0 and ρ, which are generalized
vectors of nominal values, and acceptable variance of e
parameter, respectively. In this way, the nominal value a
acceptable deviation of each parameter can be contro
independently. The equation

(5)

has the effect of driving p toward p0, if iterated and ∆p is
applied to p. The rate of convergence can be modified by le
multiplying both sides by any nonsingular matrix V. We choose
V to be a diagonal square matrix with elements

 (6)

where m is an integer. This V matrix restricts each parameter t
a virtual potential well about the nominal value whe
incorporated into the least squares fit, equation (7).

(7)

Equation (7) limits the variance of our parameters to p
defined ranges, and weights the variance equally with 
position error, . The potential well function can also b
adjusted by the choice of m; at m = 10, when the difference
between a parameter, , and its default value, , is , 
corrective  is equivalent to a positional error of 0.34mm, b
if the difference is , the corrective  is equivalent to

p0 p–[ ] I∆p=

Vii N–
pi∂
∂ p0i pi–

ρi

----------------- 
  m

=

∆d1

…
∆dN

V p0 p–[ ]

Ĵ φ1 p,( )

…
Ĵ φN p,( )

V

∆p[ ]=

∆d

p po 0.9 ρ⋅
∆p

1.5 ρ⋅ ∆p
h

d

e

positional error of 57.0mm. It is important for numerica
stability that each pi not stray too much outside the varianc
This is avoided by reducing the step size on the optimizat
iteration adaptively.

Some refinements in the hand model and calibration rout
continue to be explored, but the current relative positi
accuracy is sufficient for our telemanipulation tasks. It 
worthwhile to note that the entire calibration process 
automated, requires no hardware other than the CyberGlo®

and a standard personal computer, and requires less than 5
minutes of data collection and computation time. Thus a new
user can be completely calibrated and ready to begin using the
CyberGlove with good accuracy within just a few minutes.

3.4 Performance Metrics and Experimental Results

An initial metric of calibration quality can be obtained by
examining the final calibration set of separation vectors ∆d from
index tip to thumb tip. The RMS calibration error, ε, is defined
as the RMS of the set of N distances between the fingertips, one
for each pose. The separation between fingertips, however,
cannot be measured exactly because of two important effects.
The first limitation is the resolution of the CyberGlove, e.g., the
IMPJ joint resolution is approximately ±0.85°, which
corresponds to a spatial position precision no better than 1
in some hand configurations. Secondly, when actually 
contact, the fingertips deform depending on the pinch fo
exerted. From empirical measurements, we estimate that 
incurs an RMS separation uncertainty of approximately 2m
with peak uncertainty of approximately 3mm. Therefor
because of these two effects we expect an ideal calibra
technique to produce an ε on the order of 2-4mm.

Users in a related experiment [12] were calibrated using 
full calibration technique. For ten users, the average ε was
5.26mm, with a standard deviation across users of 1.40mm 
worst-case value of 7.8mm. In contrast, when calibrating w
angular offsets only, ε values range from 11mm up to 25mm i
the worst case. The difference between the two calibrat
methods was readily apparent by visual inspection of 
graphical hand model display. Use of the offsets-only techniq
resulted in visually incongruous hand configurations.

To further compare the two methods, we introduce a sec
performance criterion, with our goal of tele-manipulation 
mind. The goal of the calibration technique is to provid
accurate information about the relative positioning of the use
fingertips, in particular the separation distance between th
To this end, a test was performed to compare the calcula
separation to the actual separation of the user’s fingers

While the user manipulated a thin rod of known leng
between the index and thumb fingertips, a set of poses w
recorded. Rods of length 12.5, 25.5, 40.5, 50, and 64mm w
used. The 12.5mm rod was difficult to manipulate and theref
prone to error. Figure 2 demonstrates the relationship betw
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actual and calculated separation for both calibration techniques.
The error bars correspond to one standard deviation in a set of
300 poses across the workspace of the hand. We constrain the
linear regression fit to pass through the origin.

The full calibration technique shows substantially better
linearity than the offsets-only technique. Linearity is more
important than exact size, because the scale of the user’s ha
unknown. Good linearity directly corresponds to a bett
measurement of the size of a virtual object grasped by the h
which is important in the next phase of telemanipulatio
mapping the human hand to a non-anthropomorphic robot.

4.0 HUMAN TO ROBOT MOTION MAPPING

A motion-mapping scheme is used to map the motions o
user's hand, measured with the calibrated glove, to comman
positions for a dexterous robot. Difficulties arise whe
attempting to map the three-dimensional motion of the hum
hand to the two-dimensional motion of a planar robot, yet s
make the mapping intuitive to the teleoperator. The differen
in workspace size and shape must be compensated for. 

We have developed a dextrous planar robotic hand, referre
as Dexter, that serves as a test bed for investigating mo
mapping methods.[12] Dexter is a two-fingered hand, with tw
degrees-of-freedom per finger. The robot operates under
operational space control framework [6] in which th
commanded positions are generated by the mapping method

4.1 Point-to-Point Mapping

An initial solution to the mapping problem is a point-to-poin
scheme in which finger tip positions are mapped to robo
finger tip positions by a single transformation matrix. The thre
dimensional fingertip positions gathered from the calibrat
glove are projected on to the x-y base plane as in Fig. 1 
plane perpendicular to the palm and containing the index fin
motion with no abduction). The projected tip positions a
transformed and scaled to the robot workspace through
standard frame transformation, shown below: 

(8)

Figure 2.   Fingertip Separation Linearity

C
al

cu
la

te
d 

S
ep

ar
at

io
n 

(m
m

)

Actual Separation (mm)
0 20 40 60 80

Full Calibaration

0 20 40 60 800

20

40

60

80
Offsets-Only Calibration

xf
R Gx 0

0 Gy

θ( )cos θ( )sin–

θ( )sin θ( )cos
xf

H x0+⋅
 
 
 

⋅=
 is

d,

d

n

s

to
n

n

e
r

a

In this equation,  represents the x-y planar projection o
fingertip position in the human hand frame, which 
transformed to a position in the robotic hand fame, , unde
rotation of  and translation of , and scaled independently
x and y by gain matrix, . The transformation parameters 
modified to best utilize the robotic workspace. 

Under this method, the motion of the robotic finge
corresponding to the index finger was relatively easy to cont
This is primarily due to the similarities between the plan
motion of the index finger and the robotic finger. Howeve
control of the robotic finger corresponding to the thumb prov
awkward. Moreover, as discussed further below, achieva
positions for the thumb were mapped to a relatively small reg
of the corresponding robot finger workspace.

The point-to-point method highlighted two underlyin
difficulties associated with mapping from a human hand to
robot hand. First, the human thumb does not directly oppose
index finger. Thus restricting manipulation to a plane remov
important information about the intended manipulation. Seco
the robot has its greatest range of object manipulation
approximately the geometric center of its workspace (Fig.
right). Ideally, this preferred robot position should correspond
the natural pinch position of the human hand. Humans, howe
tend to manipulate small objects toward the outer edge of 
hand workspace (Fig. 3, left). Simply scaling the motions of t
thumb and index fingertips to fit in the robots workspace resu
in manipulations being performed near the lower limit of th
robot hand workspace, thereby limiting the manipulation ran
of the robot.

4.2 Virtual Object Based Mapping

To address the deficiencies of the point-to-point mapping
method was developed based on the manipulation of a vir
object. The goal of this mapping is to allow the user to ma
natural motions, such as grasping, releasing, or rolling 
object, and have the robot perform analogous motions. T
object based mapping scheme assumes that a virtual sphe
held between the user’s thumb and index finger. Import
parameters of the virtual object (the size, position a
orientation) are scaled independently and non-linearly to cre
a transformed virtual object in the robotic hand workspace. T
modified virtual object is then used to compute the robo
fingertip locations (Fig. 3). 

4.2.1 Mapping Implementation

The size of the virtual object is based on the thre
dimensional distance between the fingertips. For example, 
person is manipulating a golf ball, the modeled finger separat
should remain the same even as the thumb moves out of plan
the index finger.

xf
H

xf
R

θ x0
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The position of the virtual object is first calculated in the hand
frame by finding the midpoint between the thumb and index
fingertips. The midpoint is then projected on to the x-y plane
(the same plane described in Section 4.1, also see Fig. 1). The
orientation of the virtual object is based on the angle of the
projection of the line between the fingertips. The calculated
object midpoint in the human hand frame is transformed to the
robotic hand frame using a standard transform as in Eq. (8), but
with a unity gain matrix. The translation maps the use
comfortable pinch location to the robot's preferred manipulat
point. The rotation angle assures that the human motion
moving a virtual object into and away from the palm
corresponds to an up/down motion on the robotic fingers.

4.2.2 Workspace Matching

The above procedure maps the size, position, and orienta
of a virtual object in the hand frame to a virtual object in t
robotic hand frame. The object parameters, in the robotic h
frame, are further modified to better match the human ha
workspace to the robot workspace yet still maintain t
correspondence between the natural human pinch position 
the preferred robot manipulation position. As discussed bel
we implemented an algorithm that modifies the obje
parameters using non-linear scaling functions. Figure 4 displ
typical hand postures and the corresponding desired rob
hand configuration.

The object size parameter is varied non-linearly so the u
can better control the robotic fingertip separation. At t
comfortable manipulation region the gain on the object size
proportional to the size difference between the human hand 
the robotic hand. However, when the distance between 
user’s fingertips increases beyond the size of a typical gras
object the gain increases such that the robot fingers can ex
to the edge of the workspace. Figure 4A demonstrates 
human hand posture for holding a small object and 
corresponding robotic hand posture. As the user spreads
fingers the robotic fingers should spread apart as in Fig. 4B.

The object size is calculated by: 

(9)

where is the calculated object size in the hand frame (th
dimensional distance between the fingertips) and is 
virtual object size in the robot hand frame used to calculate 

Figure 3.   Object based mapping schematic
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robot fingertip positions. The gain, , is a piecewise line
function of the virtual object size in the hand frame, illustrat
in Fig. 5a. The markers A and B reflect the gain used in 
postures A and B in Fig. 4. 

The object midpoint parameter is also varied in a non-line
manner. Around the comfortable pinch position, we wish to m
motions to the preferred manipulation region for the robo
hand, as in Fig. 4D. When the user extends his fingers a
from or towards the palm, the robot should approach its o
workspace limits (Figs. 4E, 4F). From the frame transformatio
the rotation matrix aligns this motion with the vertical (y-axi
in the robotic hand frame. Thus the vertical position of t
midpoint in the robotic hand frame is modified as follows:

(10)

where  is the unit gain midpoint y-value (height) in th
robotic hand frame and  is the modified midpoint y-value 
the object used to compute the robot fingertip positions. T
gain, , is a piecewise linear function of . The positio
gain function is illustrated in Fig. 5b. The gains necessary 
reaching postures D, E and F, shown in Fig. 4, are indicated w
corresponding markers in the figure.

The modified size and position of the virtual object in th

KOBJ

Figure 4.   Typical robotic and human hand 
positions under object based mapping
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Figure 5.   Functions for object size and midpoint gains

b:a:

yMP
R KY ŷMP
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robotic hand frame are then used in conjunction with the object
orientation (calculated in the projected hand frame) to compute
the necessary commanded robotic fingertip positions. 

In summary, the virtual object based mapping method
provides a solution to the problems associated with the
kinematic differences between the human and robot hands.
Using a virtual three-dimensional object yields additional
information about the intent of the manipulation compared to a
simple planar projection of tip positions. The use of non-linear
gains on the object size and midpoint help match the workspace
while mapping the human pinch point to the robot’s ide
manipulation point. 

By customizing the object gain parameter and the midpo
mapping parameter, as well as parameters for the transforma
from the human hand frame to the robot hand frame, a partic
mapping can be constructed for each user which allows him
to control the robot in a relatively intuitive manner. Th
parameters associated with the gain functions, such as 
values, slopes between gains, and locations of gain regions,
also be modified to suit a particular user’s hand. Because
gain of the position is based on the object and not on projec
fingertip positions, if a user rolls a ball about his/he
comfortable manipulation location, the robot will ideally roll 
slightly larger ball about its optimal point in the center of th
workspace, see Fig. 4C. 

4.3 Mapping Method Results

The mapping methods presented above were tested using
planar robotic hand described previously. The data presen
here represents a typical user’s mapping results. The user’s 
was first calibrated to the kinematic model using the proced
developed in Section 3. The user moved his fingers through
range of postures shown in Fig. 4 (motions were ma
independent of the mapping method used). For comparis
both methods attempted to map the postures shown in Figs
and 4F to the vertical motion on the robot; this is also import
for making the mapping intuitive. The parameters of ea
method were adjusted using a virtual display of the robo
hand, before allowing the user to directly control the robot. 

Figure 6a represents achievable human positions as map
under the point-to-point method in the robotic hand frame. T
mapped positions of the index and thumb are plotted over 
workspace of the robotic hand, where the index and thu
correspond to the left and right robot finger, respectively.

From the figure, one can see that the index finger maps
much of the left robot finger workspace. The limitations 
using the planar projection of the thumb tip position are a
displayed. The thumb motion is mapped to a relatively sm
area roughly along a line crossing the workspace. 

The large number of achievable points significantly outsi
the workspace leads to a distortion in the mapping. F
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commanded positions outside the robot’s workspace, the ro
will go to the closest possible position. Thus, for many hum
finger motions the robot is driven to the edge of its workspac

The mapped human pinch point is also illustrated in t
figure. The pinch point corresponds to a point closer to the e
of the robot’s workspace, which limits the robot’s manipulatio
range at that location.

Achievable human positions mapped under the object ba
mapping are also shown in Fig. 6b. Again, the mapped positi
of the index and thumb are plotted with the workspace of 
robot. Notice that the reachable positions for the index finger
almost completely within the left finger workspace, and t
motion of the right finger (thumb) is greatly expanded. T
figure also shows that the mapped human pinch point loca
and the preferred robotic manipulation point match direct
allowing greater manipulation range.

Some aspects of the object mapping method are unique to
robotic hand. Because our robot is a two fingered hand with 
degrees of freedom per finger, symmetric motions increase
range of motion in rolling manipulations. However, when 
human rolls an object between the index and thumb, the mo
of the thumb tends to be smaller than that of the index. T
motion disparity is also the case when separating the fing
from the natural pinch position. To map this asymmetry to o
symmetrical robot we shift the midpoint of the object closer
the thumb to accentuate thumb motion. By shifting t
midpoint, we avoid using a non-linear gain function on t
midpoint x-position. As a result, the release posture (Fig. 4B

Figure 6.   Mapping results for a typical user
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symmetrical in the robot’s workspace.

While the virtual object mapping concept has be
demonstrated using a particular robotic hand, the mapp
method is a general technique and is extensible to most pl
robot hands. By modifying the mapping parameters, particula
the non-linear gain functions, the motions of the human ha
can be mapped to a different robot workspace. If a robot h
has additional degrees-of-freedom per finger, there is no
unique configuration to achieve a desired virtual object positi
The redundancy may be used to control contact location, ext
the reachable workspace or other optimizations.

One caveat that must be observed when performing the n
linear mapping is that, in some cases, relatively small motio
of the human fingers could result in large motions of the rob
fingers. Thus it may be desirable to plot corresponding veloc
ellipsoids for various regions of the workspace to guard aga
this possibility.

5.0 FUTURE WORK

Certain issues regarding the calibration of the user’s hand
the CyberGlove continue to be explored. These include 
effect of non-orthogonal thumb trapeziometacarpal rotati
axes, methods to insure numerical stability of the least squ
regression, and extension to all five fingers of the human ha
In addition, current study is underway to more thorough
explore the significance of the various possible sensor cro
coupling combinations.

Further investigation of the object mapping method will foc
on using the intended manipulation information to command 
robot to perform specific manipulation actions. Manipulatio
actions, such as rolling, would use robot fingertip conta
information and rolling kinematics to accurately crea
commanded positions. Other actions, such as object explora
could give the user direct control over an individual finger tip.
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