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ABSTRACT

This paper presents a calibration scheme and kinematic
mapping to support dexterous telemanipulation. The calibration
scheme is intended for use with an instrumented glove and
permits an accurate determination of the intended motions of a
virtual object grasped between a human operator’'s thumb and
index finger. The motions of the virtual object are then mapped
to analogous motions of a scaled virtual object held in a two-
fingered robot hand. A non-linear mapping scheme allows better
utilization of the human and robot hand workspaces.

1.0 INTRODUCTION

The work described in this paper is part of an effort to allow a
general-purpose instrumented glove to be used as an input
device for manipulating objects held in a dexterous
telemanipulator. In this approach, the human operator grasps
and manipulates virtual objects (e.g., between the thumb and
index finger) using the glove. The resulting object motions are
transmitted to a robot hand that performs the manipulations on
real objects. A force feedback device, described in [11], can
relay grasp forces back to the operator.

This approach has the advantage that it does not require a
specially designed manipulandum or hand master and can be
adapted for used with most robot hands. However, it raises a
couple of technical challenges not encountered when using a

robot may have different kinematics and a different workspace
than the human hand; therefore a mapping from the human
workspace to the robot workspace must account for these
differences. In the present case, the robot hand is planar, and a
particular issue is to account for the non-planar motions of a
human hand.

In the following sections we first review related work and
then present a kinematic model of the human hand that is
specialized for thumb/index finger manipulations. The model is
designed for use with the instrumented glove. Next, we present
a calibration routine for the instrumented glove that quickly and
accurately adjusts the model to fit a particular user. We then
present a mapping from the motions of an unconstrained human
hand to a non-anthropomorphic planar robot hand. The mapping
is designed so that when a human makes a natural motion such
as rolling, grasping or releasing an object, the robot makes an
analogous motion. We present the approach using a particular
two-fingered planar robotic hand and discuss extrapolations to
the general case.

2.0 PREVIOUS WORK

The human hand is a remarkably complex mechanism, and
researchers have made various approximations when modeling
it for different purposes. In our case, we need a kinematic hand
model that allows sensor readings to be mapped to coordinate

manipulandum. First, a kinematic calibration of each users frames and joint angles; modelling of the tendons or external
hand must be obtained. The calibration should be specialized to@PPearance is secondary. Kuch and Huang [8] model the hand
obtain an accurate measure of the intended motions of objectsVith 26 DOF, though they do not present accuracy values.
manipulated between the fingers. Second, the intended motionsXhling and Hollerbach [9] show that the index finger can be
of the virtual object in the operator's fingers must be mapped to Medeled as a kinematic linkage with simple rotary joints with
analogous motions of real objects held in the robot hand. The little loss of accuracy. Kramer [7] presents a kinematic linkage



model of the thumb, though no accuracy results are presented. Oyberdove

Sensor Location

Calibrating a model to a particular human hand is necessary
for accurate telemanipulation. Fischer et al. [4] use a vision
based system to track fiducial points on an individual hand,
while measuring the joint angles with a data glove. By using a
neural network, they achieve tip position errors less than 1.8
mm.

The calibration technique described in this paper applies
closed-loop kinematic calibration methods to the human hand,
requiring touching fingertip to thumb. This method was used to
calibrate the fingers of the Utah-MIT Dextrous Robot Hand in
[2], athough rolling was not allowed in that case.

When mapping from human hand motions to robot mations,
two principal approaches dominate the literature. In some work,
the hand is placed within an exoskeleton which is kinematically
similar to the robot.[14] By limiting the allowable motions of
the human hand, the transformation to the robot motion is
simplified. In other work, the robot hand is anthropomorphic
and approximately matches the motion of the human
hand.[4][10] Certain difficulties in mapping from human to
robot are avoided, but requires a more complex and expensive
robot hand.

Figure 1. Kinematic Hand Model
motion (flexion/extension, abduction/adduction and pronation/
supination), it only has two degrees of freedom. In other words,
for a given flexion (rotation about the palm) and abduction
(angle between the thumb and palm), the thumb has a unique
pronation (twist). Hollister et al. [5] demonstrate that this is
because the thumb rotation) axis and the thumb abduction

3.0 HUMAN HAND CALIBRATION . ) .
(Tagp) axis are non-orthogonal and non-intersecting.

3.1 Hand Model In our model (Fig. 1), we maintain orthogonality for
We have developed a sufficiently accurate kinematic model of computation purposes, and to better match the sensor
the human hand and an expedient means of customizing the positioning of the CyberGIO\% The Ttg joint islocated at the

model to a particular user's hand. Using the models developed base of the thumb with the axis of rotation along the index

by Rohling and Hollerbach [9] and Kramer [7], observations by Metacarpal. The Tagp axis is offset from and orthogonal to the
Cooney et al.[3] and Hollister et al.[5], and our empirical TTr &is. In order to account for the thumb pronation, an
examinations, we have developed a kinematic model which we Unsensed axis is placed along the thumb metacarpgic(“T
feel is well suited for measuring and displaying fine fingertip twist)- The angle of this “joint” is a linear function of the
manipulations. In this model, the human hand is converted to a abduction and flexion.

mechanical linkage, with finger bones intersecting in Hookean  Some hand models [8] place a spherical joint at the

pin joints. The model does not take into account effects such asmetacarpophalangeal joint¢F;). One of the axes of motion,
soft tissue deformation or bone-on-bone sliding. however, exhibits little motion without being externally forced.

Referring to Fig. 1, the base coordinate system for The “principal” Typ; axis is parallel to the zgp axis for a 0°
convenience is located in the hand at the point where the thumbTmcwis- The interphalangeal joint (§ is parallel to the fp;.
and the index metacarpal meet. The base frame x-axis points . . .
along the index metacarpal bone, the y-axis is directed outward3'2 Calibration Routine
from a flat open palm, with the z-axis defined by the right hand We have generated a reliable and expedient means of
rule. calibrating a user's hand for use with the CyberGlowroper
calibration to a particular user’s hand is essential for quality
telemanipulation. By developing a routine which can be
performed quickly and accurately each time the device is used, a
new user can begin to work in a matter of minutes.

The index finger is defined similarly to that presented in
Rohling and Hollerbach.[9] The index metacarpophalangeal
joint has two orthogonal collocated degrees of freedom,
abduction (hgp) and flexion (l4p5). The transforms from the
Imps to the b3, Ipyto Iy and b to fingertip are all defined The current calibration routine is what we call a “zero-
such that axes of rotation are parallel. hardware solution,” in which the user places his or her thumb
and index finger tips together and maintains rolling contact

hile moving the fingers. The computer records 80 distinct data
points with the CyberGlo sensor values over 40 seconds.

Modeling the thumb is more challenging. Cooney et al. [3]
show that even though the metacarpal bone has three modes o



Because the fingers remain in contact, we can approximate the
hand as a closed kinematic chain with the fingertips in fixed
contact. This is only an approximation because of several
factors, including rolling motion and soft tissue deformation.
This closed kinematic chain has one unsensed joint at the finger-
thumb contact point, with three rotational degrees of freedom.

The error at each data point is the calculated separation
between the two fingers in our nominal kinematic model. We
use a least squares regression iteration to modify the nominal
model to an error-minimizing model for the particular user. The
major advantage of the zero hardware solution is the lack of any
external calibration sensor, such as a vision system, which
would increase complexity and cost.

3.3 Least Squares Fit

Rohling and Hollerbach [9] calibrated the human index finger
using a least sguares regression. They directly measured the
position of the index tip using a vision system, which can be
treated as a closed chain with the sensor measurement as the
final link. We performed a similar procedure, using instead a
closed finger-thumb kinematic chain.

3.3.1 Angular Offset Calibration

After storing N poses, we generate error vectors Ad from each
calculated index position to the corresponding calculated thumb
position, using the forward kinematics of the hand model. The
hand model kinematics also provide Jacobians, J, relating
infinitesimal joint angle motion to operational space motion;
these Jacobians are functions of the joint angles, @. These
relations are vertically concatenated from 1 to N to get

Ad, J(@, +6)

ad,| = |3(g, +8)|128] )

n
Ady J(oy+9)

or, more compactly, Ad = CA8, where @, is the set of joint
angles for pose n, 6 is a vector of offsets applied to each set of
@, and C is the matrix of concatenated Jacobians. We can
evaluate a least-squares solution, A8, to this linearized system
using the left pseudo-inverse of C, based on the SVD. At each
iteration step, 6 is modified by AB. The values of Ad and C are
recalculated, using the new 6. The iteration continues until
AB - 0. An extensive discussion on the numerical stability of
this convergence is presented by Rohling and Hollerbach [9].

Because this calibration generates a scal e-independent model,
for this phase of the calibration development we make the
assumption that the ratios of bone lengths to one another are
fairly constant among users. The relative length of each bone is
taken from published biomechanics data.[1]

3.3.2 Including Unknown Sensor Gains

Implementation of the angular offset calibration resulted in
poor accuracy of the modeled hand. Because the Q/berGlove®
attaches to the soft tissue of the hand, and due to the nature of
the sensors, the conversion gain from sensor value to angular
guantity is variable from user to user, unlike in an exoskeleton-
type hand master. In addition, some glove sensors are physically
cross-coupled, i.e, sensor values may change due to the
movement of more than one joint.

The solution is to expand the calibration to optimize the
values of the sensor gains, using the relation

@ = g0, + 9 2

where o; is the raw sensor value, and g; is the gain. A new

Jacobian J, is formed by adding columns for the new gain
parameters:

_ 7146 _ . AB
Ad, = Jn{Ag} = [Jn D|ag(0n)|:]n} {Ag} ©)

Note that the individual 3,1 has linearly dependent columns,
however the concatenated Jacobian matrix C will not, because
each set of sensor readings o,, isdistinct.

In addition, cross-coupling effects can be modeled by
including a cross gain parameter. For instance, the Tt and
Tagp Sensors are highly cross-coupled between the T1gr, Tagp,
and Tyc Twist @ngles of the model. The relation between these
two sensors and their corresponding model joints can be
expressed in matrix form:

Orr Orr ofgRP o O1r
_ 0(TR)
PasD = | 9Bo  Yamp + 10480 ©)
TR agp | L93(ABD) )
v Twist Ovctw  IMCTw MC Twist

To include the cross-coupled nature of these two sensors, we
need six parameters instead of just grr and gagp. Note that the
Tmc Twist Parameter has no corresponding o value because the
q/berGIove® does not measure this type of motion. J, is
extended for the cross gain parameters similarly to (3).

Jn can be further expanded to include relations between bone
lengths and fingertip positions. Bone lengths, gains, and offsets
can then be incorporated into a generalized parameter vector p.
The model calibration can now be optimized in virtually every
relevant parameter. In summary we are now calibrating for:

* nine constant offset parameters of the mogjel:
* eight bone lengthg,;
e eight sensor gaing;

» and four cross-coupling termg,  defined in Eq. (4)

When this revised calibration was performed, the hand
parameters converged quickly to trivial solutions. In one case,
all the gains converge to zero, eliminating all finger motion. The



other parameters converge to a configuration where the finger
offset is exactly zero. Because the fingers do not move, the error
iszero for al sensor readings. In a second case, al bone lengths
converge to zero, similarly eliminating all motion.

Onetool for preventing closed-loop trivial solutionsisto fix a
gain and length [2]. An alternate method to prevent this
difficulty is the use of a priori estimates, as advocated in [13].
The calibration routine can be further modified to limit
parameter deviation as discussed bel ow.

3.3.3 Limitation of Parameter Deviation

Using a graphical display of the hand model and the default
calibration information which ships with the CyberGIove®, itis
possible to manually adjust the set of parameters 6 and g to
produce a visually acceptable representation of the human hand
across a wide variety of users. This type of manual calibration,
however, produces spatial accuracy which is not sufficient for
fine telemanipulation tasks. These values are used as a first
approximation of the physical values, and are used to generate a

nominal “biologically feasible” parameter set from which we

can limit parameter variance.

To complement our generalized parameter vegprwe

positional error of 57.0mm. It is important for numerical
stability that eaclp; not stray too much outside the variance.
This is avoided by reducing the step size on the optimization
iteration adaptively.

Some refinements in the hand model and calibration routine
continue to be explored, but the current relative position
accuracy is sufficient for our telemanipulation tasks. It is
worthwhile to note that the entire calibration process is
automated, requires no hardware other than the Cyber%love
and a standard personal computer, and requires less than 5
minutes of data collection and computation time. Thus a new
user can be completely calibrated and ready to begin using the
CyberGlove with good accuracy within just afew minutes.

3.4 Performance Metrics and Experimental Results

An initial metric of calibration quality can be obtained by
examining the final calibration set of separation vectors Ad from
index tip to thumb tip. The RMS calibration error, €, is defined
asthe RMS of the set of N distances between the fingertips, one
for each pose. The separation between fingertips, however,
cannot be measured exactly because of two important effects.
Thefirst limitation is the resolution of the CyberGlove, e.g., the

introduce two new vectorg, and p, which are generalized lwpy joint resolution is approximately +0.85° which
vectors of nominal values, and acceptable variance of eachcorresponds to a spatial position precision no better than 1mm
parameter, respectively. In this way, the nominal value and in some hand configurations. Secondly, when actually in

acceptable deviation of each parameter can be controlledcontact, the fingertips deform depending on the pinch force
independently. The equation exerted. From empirical measurements, we estimate that this

incurs an RMS separation uncertainty of approximately 2mm,
[Po—pl = 14p () with peak uncertainty of approximately 3mm. Therefore,
has the effect of driving toward p,, if iterated andAp is because of these two effects we expect an ideal calibration
applied top. The rate of convergence can be modified by left

technique to produce aron the order of 2-4mm.
multiplying both sides by any nonsingular matvixWe choose
V to be a diagonal square matrix with elements

Users in a related experiment [12] were calibrated using the
full calibration technique. For ten users, the averageas
5.26mm, with a standard deviation across users of 1.40mm and
worst-case value of 7.8mm. In contrast, when calibrating with
angular offsets only values range from 11mm up to 25mm in
the worst case. The difference between the two calibration
methods was readily apparent by visual inspection of the
graphical hand model display. Use of the offsets-only technique
resulted in visually incongruous hand configurations.

_ 0 [Poi —Pi"
vV, = —/NL 6
i = R B (6)
wherem is an integer. Thi¥ matrix restricts each parameter to

a virtual potential well about the nominal value when
incorporated into the least squares fit, equation (7).

Ady J(®y, p) To further compare the two methods, we introduce a second
_ performance criterion, with our goal of tele-manipulation in
=|. [Ap] (7) ; . , - . .
Ady 3@y P) mind. The goal of the calibration technique is to provide
V[py—p V, accurate information about the relative positioning of the user’s
0

fingertips, in particular the separation distance between them.

Equation (7) limits the variance of our parameters to pre- 10 this'end, a test was performed to compare the calculated
defined ranges, and weights the variance equally with the Separation to the actual separation of the user’s fingers
position error,Ad . The potential well function can also be

adjusted by the choice of; atm = 10, when the difference  hopyeen the index and thumb fingertips, a set of poses were
between a parametey, , and its default vagye, 0.9isp  he recorded. Rods of length 12.5, 25.5, 40.5, 50, and 64mm were
correctiveAp is equivalent to a positional error of 0.34mm, but ,qeq The 12.5mm rod was difficult to manipulate and therefore
if the difference isL5Cp , the correctivep  is equivalent 10 @ one 1o error. Figure 2 demonstrates the relationship between

While the user manipulated a thin rod of known length



Offsets-Only Calibration Full Calibaration In this equationx;’ represents the x-y planar projection of a
fingertip position in the human hand frame, which is
transformed to a position in the robotic hand fasde, , under a
rotation of6 and translation of, , and scaled independently in
x and y by gain matrixG . The transformation parameters are
modified to best utilize the robotic workspace.

(0]
o

(o]
o

Under this method, the motion of the robotic finger
corresponding to the index finger was relatively easy to control.
o 20 20 60 800 20 40 a0 80 This_ is primaril_y due_to the similarities b_et\/\_/een the planar

Actual Separation (mm) motion of the index finger and the robotic finger. However,
control of the robotic finger corresponding to the thumb proved
awkward. Moreover, as discussed further below, achievable
positions for the thumb were mapped to a relatively small region
of the corresponding robot finger workspace.

N
o
<

Calculated Separation (mm)
5
o

o

Figure 2. Fingertip Separation Linearity

actual and cal culated separation for both calibration techniques.
The error bars correspond to one standard deviation in a set of
300 poses across the workspace of the hand. We constrain the _ _ o _
linear regression fit to pass through the origin. The point-to-point method highlighted two underlying
difficulties associated with mapping from a human hand to a
The full calibration technique shows substantially better PpIng

linearity than the off I i O robot hand. First, the human thumb does not directly oppose the
Inearity than the offsets-only technique. Linearity is more index finger. Thus restricting manipulation to a plane removes

|mEortant trgn Zxal?t SIZ€, bzpausle the scale OLthe usersbhand I?mportant information about the intended manipulation. Second,
unknown. Good linearity directly corresponds 10 a DeWer o oot has its greatest range of object manipulation at

measurement of the size of a virtual object grasped by the hand’approximately the geometric center of its workspace (Fig. 3,

Wh'Ch. is important in the next phase of telem_anlpulanon; right). Ideally, this preferred robot position should correspond to

mapping the human hand to a non-anthropomorphic robot. the natural pinch position of the human hand. Humans, however,

4.0 HUMAN TO ROBOT MOTION MAPPING tend to manipulate.small objegts toward .the outer gdge of the
hand workspace (Fig. 3, left). Simply scaling the motions of the

A motion-mapping scheme is used to map the motions of a thymb and index fingertips to fit in the robots workspace results
user's hand, measured with the calibrated glove, to commandedy manipulations being performed near the lower limit of the

positions for a dexterous robot. Difficulties arise when rohot hand workspace, thereby limiting the manipulation range
attempting to map the three-dimensional motion of the human of the robot.

hand to the two-dimensional motion of a planar robot, yet still
make the mapping intuitive to the teleoperator. The differences 4.2 Virtual Object Based Mapping

in workspace size and shape must be compensated for. To address the deficiencies of the point-to-point mapping, a

We have developed a dextrous planar robotic hand, referred tomethod was developed based on the manipulation of a virtual
as Dexter, that serves as a test bed for investigating motionobject. The goal of this mapping is to allow the user to make
mapping methods.[12] Dexter is a two-fingered hand, with two natural motions, such as grasping, releasing, or rolling an
degrees-of-freedom per finger. The robot operates under anobject, and have the robot perform analogous motions. The
operational space control framework [6] in which the object based mapping scheme assumes that a virtual sphere is
commanded positions are generated by the mapping method. held between the user's thumb and index finger. Important

_ . . parameters of the virtual object (the size, position and
4.1 Point-to-Point Mapping orientation) are scaled independently and non-linearly to create
An initial solution to the mapping problem is a point-to-point @ transformed virtual object in the robotic hand workspace. This

scheme in which finger tip positions are mapped to robotic Modified virtual object is then used to compute the robotic
finger tip positions by a single transformation matrix. The three- fingertip locations (Fig. 3).

dimensional fingertip positions gathered from the calibrated
glove are projected on to the x-y base plane as in Fig. 1 (the
plane perpendicular to the palm and containing the index finger The size of the virtual object is based on the three-
motion with no abduction). The projected tip positions are dimensional distance between the fingertips. For example, if a

transformed and scaled to the robot workspace through aPersonis manipulating a golf ball, the modeled finger separation
standard frame transformation, shown below: should remain the same even as the thumb moves out of plane of

the index finger.
G, O} Egcos(e) —sin(G)} Ok + xo% (8)
a

0 G, sin(B) cog(0)

4.2.1 Mapping Implementation
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The position of the virtual object isfirst calculated in the hand Laoe Oblect Grasp (B Extord Posiion
frame by finding the midpoint between the thumb and index £ )
fingertips. The midpoint is then projected on to the x-y plane _t,. P
(the same plane described in Section 4.1, also see Fig. 1). The / \ @
orientation of the virtual object is based on the angle of the " \
projection of the line between the fingertips. The calculated (C) Object Rolling (F) Retracted Positon

object midpoint in the human hand frame is transformed to the
robotic hand frame using a standard transform asin Eq. (8), but

with a unity gain matrix. The translation maps the user's
comfortable pinch location to the robot's preferred manipulation
point. The rotation angle assures that the human motion o
moving a virtual object into and away from the palm
corresponds to an up/down motion on the robotic fingers.

Figure 4. Typical robotic and human hand
positions under object based mapping
robot fingertip positions. The gaiKys; , IS a piecewise linear
ffunction of the virtual object size in the hand frame, illustrated
in Fig. 5a. The markers A and B reflect the gain used in the
postures A and B in Fig. 4.

The object midpoint parameter is also varied in a non-linear
manner. Around the comfortable pinch position, we wish to map

The above procedure maps the size, position, and orientationmotions to the preferred manipulation region for the robotic
of a virtual object in the hand frame to a virtual object in the hand, as in Fig. 4D. When the user extends his fingers away
robotic hand frame. The object parameters, in the robotic hand from or towards the palm, the robot should approach its own
frame, are further modified to better match the human hand workspace limits (Figs. 4E, 4F). From the frame transformation,
workspace to the robot workspace yet still maintain the the rotation matrix aligns this motion with the vertical (y-axis)
correspondence between the natural human pinch position andin the robotic hand frame. Thus the vertical position of the
the preferred robot manipulation position. As discussed below, midpoint in the robotic hand frame is modified as follows:
we implemented an algorithm that modifies the object . .
parameters using non-linear scaling functions. Figure 4 displays Yue = KyDymp (10)
typical hand postures and the corresponding desired robotic
hand configuration.

4.2.2 Workspace Matching

where v, is the unit gain midpoint y-value (height) in the
robotic hand frame ang,  is the modified midpoint y-value of

The object size parameter is varied non-linearly so the userthe object used to compute the robot fingertip positions. The
can better control the robotic fingertip separation. At the gain, Ky , is a piecewise linear function @}, . The position
comfortable manipulation region the gain on the object size is gain function is illustrated in Fig. 5b. The gains necessary for
proportional to the size difference between the human hand andreaching postures D, E and F, shown in Fig. 4, are indicated with
the robotic hand. However, when the distance between the corresponding markers in the figure.

user’s fingertips increases beyond the size of a typical grasped 1he modified size and position of the virtual object in the
object the gain increases such that the robot fingers can extend

to the edge of the Workspace_ Figure 4A demonstrates the Gain as a Function of Calculated ~ Gain as a Function of Midpoint Height
. . . Object Si .
human hand posture for holding a small object and the — Gain.Kg, —7°%°%° Gain. K,
corresponding robotic hand posture. As the user spreads his ®
fingers the robotic fingers should spread apart as in Fig. 4B. Large Object] Bgtom ®
The object size is calculated by: ® Top | ©
Proportionall Gain
R H Gain 7 ngitr?r"
doss = Kogy [Hosy 9) | ) R ) | ) R
. . . . SmaII.IObecl Largé.Object i Botltom Celntg-:r Tép
wheredss, is the calculated object size in the hand frame (three Size” Size Location

dimensional distance between the fingertips) aidg, is the & Object Size, diy, b2 wigpoint Y-value. .
virtual object size in the robot hand frame used to calculate the Figure 5. Functions for object size and midpoint gains



robotic hand frame are then used in conjunction with the object
orientation (calculated in the projected hand frame) to compute
the necessary commanded robotic fingertip positions.

In summary, the virtual object based mapping method
provides a solution to the problems associated with the
kinematic differences between the human and robot hands.
Using a virtual three-dimensional object yields additional

commanded positions outside the robot’s workspace, the robot
will go to the closest possible position. Thus, for many human
finger motions the robot is driven to the edge of its workspace.

The mapped human pinch point is also illustrated in the
figure. The pinch point corresponds to a point closer to the edge
of the robot’s workspace, which limits the robot’'s manipulation
range at that location.

information about the intent of the manipulation compared to a
simple planar projection of tip positions. The use of non-linear
gains on the object size and midpoint help match the workspace
while mapping the human pinch point to the robot's ideal
manipulation point.

Achievable human positions mapped under the object based
mapping are also shown in Fig. 6b. Again, the mapped positions
of the index and thumb are plotted with the workspace of the
robot. Notice that the reachable positions for the index finger lie
almost completely within the left finger workspace, and the

By customizing the object gain parameter and the midpoint motion of the right finger (thumb) is greatly expanded. The
mapping parameter, as well as parameters for the transformatiorfigure also shows that the mapped human pinch point location
from the human hand frame to the robot hand frame, a particularand the preferred robotic manipulation point match directly,
mapping can be constructed for each user which allows him/herallowing greater manipulation range.
to control the robot in a relatively intuitive manner. The

parameters associated W'.th the gain f_unctlons, _SUCh 8S 9alNohotic hand. Because our robot is a two fingered hand with two
values, slope_s_ between_ gains, gnd locations of gain regions, CarHegrees of freedom per finger, symmetric motions increase the
also be modified to suit a particular user’'s hand. Because therange of motion in rolling manipulations. However, when a
gain of the position is based on the object and not on projectedp, o, ojis an object between the index and thumb ’the motion
fingertip positions, if a user rolls a ball about his/her of the thumb tends to be smaller than that of the’index. The
comfortable manipulation location, the robot will ideally roll a motion disparity is also the case when separating the fingers
slightly larger ball' about its optimal point in the center of the from the natural pinch position. To map this asymmetry to our
workspace, see Fig. 4C. symmetrical robot we shift the midpoint of the object closer to
the thumb to accentuate thumb motion. By shifting the
midpoint, we avoid using a non-linear gain function on the

The mapping methods presented above were tested using thenidpoint x-position. As a result, the release posture (Fig. 4B) is
planar robotic hand described previously. The data presented

here represents a typical user’s mapping results. The user's hanc o
was first calibrated to the kinematic model using the procedure
developed in Section 3. The user moved his fingers through the
range of postures shown in Fig. 4 (motions were made
independent of the mapping method used). For comparison,

both methods attempted to map the postures shown in Figs. 4E<% '3
and 4F to the vertical motion on the robot; this is also important = 5|
for making the mapping intuitive. The parameters of each
method were adjusted using a virtual display of the robotic
hand, before allowing the user to directly control the robot.

Some aspects of the object mapping method are unique to our

4.3 Mapping Method Results

o

o
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Figure 6a represents achievable human positions as mappec  or
under the point-to-point method in the robotic hand frame. The
" . £0.05
mapped positions of the index and thumb are plotted over the &
workspace of the robotic hand, where the index and thumb & o1}

correspond to the left and right robot finger, respectively. %)
015}

From the figure, one can see that the index finger maps to s
much of the left robot finger workspace. The limitations of
using the planar projection of the thumb tip position are also
displayed. The thumb motion is mapped to a relatively small

0.2}
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H H A Index mapped positions X-Axis, meters .
area roughly along a line crossing the workspace. o Thumb mepaed posiions . Lot rwg@r
The large number of achievable points significantly outside Preferred robot manipulation point SRR S AN

the workspace leads to a distortion in the mapping. For X Mapped inch point posiion

Figure 6. Mapping results for a typical user



symmetrical in the robot’s workspace. 552.
While the virtual object mapping concept has been [3] Cooney, W.P., Lucca, M.J., Chao, E.Y.S., Linschied R.L.,
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method is a general technique and is extensible to most planar 10Nt J. Bone Joint Surg. 63A:1371-1381.

robot hands. By modifying the mapping parameters, particularly [4] Fischer, M., van der Smagt, P., Hirzinger, G., 1998, .

the non-linear gain functions, the motions of the human hand “Learning Techniques in a Dataglove Based Telemanipulation

can be mapped to a different robot workspace. If a robot hand System for the DLR Hand,” 1998 IEEE ICRA, pp1603-1608.

has additional degrees-of-freedom per finger, there is not a [5] Hollister, A., Buford, W.L., Myers, L.M., Giurintano, D.J,

unique configuration to achieve a desired virtual object position. ~ Novick, A., 1992, “The Axes of Rotation of the Thumb

The redundancy may be used to control contact location, extend Carpometacarpal Joint,” J. of Orthopaedic Res., vol. 10, pp.

the reachable workspace or other optimizations. 454-460.

[6] Khatib, O., 1987, “Unified Approach for motion and force
control of robot manipulators: the operational space
formulation,” IEEE J. of Robotics and Automation, vol. 3,
no. 1, pp. 43-53.

[7] Kramer, J.F., “Determination of Thumb Position Using
Measurements of Abduction and Rotation,” U.S. Patent
#5,482,056.

5.0 FUTURE WORK [8] Kuch, J.J., Huang, T.S., 1995, “Human Computer
Interaction via the Human Hand: A Hand Model,” 1995
Asilomar Conf. on Signals, Systems. and Computers. pp.
1252-1256.

[9] Rohling, R.N., Hollerbach, J.M., 1993, “Calibrating the

One caveat that must be observed when performing the non-
linear mapping is that, in some cases, relatively small motions
of the human fingers could result in large motions of the robot
fingers. Thus it may be desirable to plot corresponding velocity
ellipsoids for various regions of the workspace to guard against
this possibility.

Certain issues regarding the calibration of the user’s hand to
the CyberGlove continue to be explored. These include the
effect of non-orthogonal thumb trapeziometacarpal rotation
axes, methods to insure numerical stability of the least squares . .
regression, and extension to all five fingers of the human hand. Human Hand for Haptic Interfaces,” Presence, vol. 2 no. 4, pp.
In addition, current study is underway to more thoroughly 281-296.

explore the significance of the various possible sensor cross-[10] Rohling, R.N, Hollerbach, J.M., Jacobsen, S.C., 1993,
coupling combinations. “Optimized Fingertip Mapping: A General Algorithm for

] o . ) ) Robotic Hand Teleoperation,” Presence, vol. 2 no. 3, pp. 203-
Further investigation of the object mapping method will focus  55q.
on using the intended manipulation information to command the [11] Turner, M.L., Gomez, D.H. Tremblay, M.R. and Cutkosky.
robot to perform specific manipulation actions. Manipulation MR 1998 “Pr'eliminar;/ Tests of an Arm-Grounded Haptic,

actions, such as rolling, would use robot fingertip contact EFeedpack Device in Telemanipulation,” 1998 ASME IMECE
information and rolling kinematics to accurately create Symp. on Haptic Interfaces. pp.145-149.

commanded positions. Other actions, such as object exploration,[lz] Turner, M.L., Findley, R.P., Griffin, W.B., Cutkosky, M.R
could give the user direct control over an individual finger tip. Gomez. D.H.. 2000 “Dévéldbment a,md.T.e,sting ofa
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