
1 Copyright © 1998 by ASME

Proceedings of DETC98:
1998 ASME Design Engineering Technical Conference

September 13-16, 1998, Atlanta, GA

DETC98/DFM-123

BUILDING BLOCK DESIGN FOR LAYERED SHAPE MANUFACTURING

Mike Binnard
Center for Design Research

Mechanical Engineering Design Division
Stanford University

Mark R. Cutkosky
Center for Design Research

Mechanical Engineering Design Division
Stanford University

ABSTRACT
We are interested in designing complex mechatronic

systems which closely integrate electronics, actuators, and
sensors with mechanical structures. Rapid prototyping
techniques open new design possibilities for these systems, such
as the ability to fabricate pre-assembled mechanisms. This
paper presents a design approach that should encourage
exploration of these new possibilities and thereby facilitate
robot design.

In the described approach, engineers build designs using a
library of three dimensional primitives and aggregations of
primitives. Associated with each primitive is enough
manufacturing process information to enable immediate
manufacturability analysis. An algorithm is presented which
automatically combines the process information from multiple
primitives. A prototype system using this algorithm has been
implemented with AutoCAD and the ObjectARX programming
interface.

KEYWORDS: Layered manufacturing, design library,
rapid prototyping, CAD, process planning.

1. INTRODUCTION
Three dimensional rapid prototyping processes (also called

SFF for Solid Freeform Fabrication), such as layered shape
deposition and laser sintering, allow designers to create
complex structures and electromechanical assemblies with
embedded sensors and electronics [Weiss, Merz, et al. 96]
[Weiss, Prinz, et al. 96]. Although these processes overcome
many limitations of traditional manufacturing, they also present
new constraints that make it difficult for designers use them
effectively. We argue that designers may be slow to realize the
potential of SFF unless they are provided with design tools that
encourage exploration and assure manufacturability. To this
end, we have developed a “Design by Composition” approach
that allows designers to construct integrated assemblies,

including embedded parts, using a library of primitive elements
that obey certain rules.

1.1 Two approaches to design
There are two approaches to designing parts for automated

processing. In the first case, which we refer to as
decomposition, the designer supplies a complete design, and the
manufacturer is responsible for creating the manufacturing
process plan. In the second approach, design by composition,
the designer assembles the design from building blocks which
include some process plan information.

1.1.1 Design Decomposition
The most common approach to design and process

planning for 3D prototyping processes is to create the part
geometry using a CAD system and then submit it to an
algorithm that decomposes (e.g., slices) it into layers or other
shapes that match manufacturing operations. This approach has
several drawbacks. The algorithms available today do not
always produce efficient or even correct decompositions of
complex parts [Ramswami 97]. Moreover, because a purely
geometric decomposition algorithm knows nothing about the
intended function of a part, it cannot tailor the decomposition
for individual features (e.g., avoiding seams or discontinuities
on bearing surfaces). Adding such knowledge to the algorithm
makes the decomposition process even more complex and error
prone. The decomposition calculations are also time consuming
and, because they are performed on the complete geometry of
the part, they force the designer to endure an iterative design-
submit-analyze-revise cycle.

1.1.2 Design by Composition
An alternative approach is to have the designer “build” a

part from primitives, or building blocks, which already have
partial process plans. A simple example part and the primitives
used to create it are shown in Figure 1. In this case, the designer

2 Copyright © 1998 by ASME

sacrifices some design flexibility and assumes part of the
computational burden of process planning. The primary
advantage is that the process plan is available at design-time,
allowing instant evaluation of part manufacturability.

Design composition distributes the manufacturability
analysis and process planning tasks over a large number of
designers, alleviating computational bottlenecks at the
manufacturing site. This approach also facilitates development
of design libraries; any design can be used as a primitive
element in future designs.

Figure 1. The design of the link in (a) can be created
with the primitives in (b), which were created by
combining cylinders and rectangular prisms and
stored in a library.

2. SHAPE DEPOSITION MANUFACTURING
The manufacturing process we have examined most is

Shape Deposition Manufacturing (SDM, see Figure 2),
developed at Carnegie Mellon and Stanford University [Merz

94]. The basic cycle for this class of process is shown in Figure
2. Part material or support material is first deposited to near net
shape using casting, micro-casting, laser welding, or other
deposition processes. The material is then shaped using a CNC
mill, or EDM machining, to obtain the desired accuracy and
surface finish. Support material can be used as a mold to cast
the next layer of part material. Prefabricated components can be
embedded after any shaping step.

Although the Design by Composition system presented
here was developed for SDM, it is applicable to other
automated manufacturing techniques, such as 3D Printing,
Stereo-lithography, and UC Berkeley’s CyberCut1 machining
process. A CyberCut interface is being developed in
collaboration with UC Berkeley.

2.1.1 Pre-assembled mechanisms
One capability of SDM that we are especially interested in

is the fabrication of pre-assembled mechanisms. Current SDM
mechanisms are created with the same technique as monolithic
parts. Moving parts are formed by depositing a thin layer of
support material between two regions of part material. Because
there is a minimum thickness for the support material, these
mechanisms have a great deal of play in their joints. The
performance of these devices is also limited by the materials
which can be deposited and the achievable surface finish.

+RZ�PHFKDQLVPV�DUH�EXLOW $IWHU�VXSSRUW�UHPRYDO

3DUW

6XSSRUW

Figure 3. The current method for fabricating pre-
assembled mechanisms with SDM. During fabrication
the moving parts are separated by a thin layer of
support material. The finite thickness of this material
causes play in the mechanisms bearings.

The concept of composing a design suggests a better
approach, in which some of the building blocks are
prefabricated components. Because these components are
embedded instead of deposited, a wider variety of materials is
available. For example, Teflon bushings or precision steel shafts
can be easily inserted into urethane or epoxy parts. A pre-
assembled SDM mechanism built with embedded components
can have the same precision and friction performance as a
traditionally assembled mechanism, but without fasteners and
other assembly constraints.

1
 http://CyberCut.berkeley.edu

'HSRVLW

6KDSH(PEHG

3DUW
6XSSRUW

Figure 2. The Shape Deposition Manufacturing (SDM)
process cycle. Material is alternately deposited and
shaped by different processes. This methodology
permits selecting a deposition process that gives
good material quality and a shaping process that has
good tolerances and surface finish.

3 Copyright © 1998 by ASME

3. DEFINITIONS
Before presenting the details of our algorithm for adding

primitives and library components to an existing design, it is
useful to define some terms associated with the SDM process.
This section describes the concepts used in our Design by
Composition system.

3.1 Growth direction and datum plane
Layered parts are normally built on a palette or elevator

which can be accurately positioned in machine tools. The top
surface of this palette defines a datum plane which represents
the “bottom” of the part. The direction perpendicular to the
datum plane is the growth axis, or growth direction. This is the
direction in which subsequent layers will be deposited.

)LUVW�OD\HU�SDUW�	�VXSSRUW 6HFRQG�OD\HU�SDUW�	�VXSSRUW

,QVHUW�EHDULQJV�DQG�VHFRQG�OLQN ,QVHUW�D�VXE�SDUW

)LQDO�SDUW�GHSRVLWLRQ $IWHU�VXSSRUW�UHPRYDO

3DUW

6XSSRUW

Figure 4. Building a pre-assembled mechanism with
embedded components. Precision bearings and pre-
fabricated parts can be inserted during the SDM
fabrication process. This technique allows tighter fits
and wider material choices.

3.2 Compacts
A compact is a three dimensional volume that represents

one processing step [Merz 94]. Note that this definition of a
“compact” is not related to the mathematical definition of a
compact set. The information required to characterize the
process step consists of material type and desired geometry.

3.2.1 Material
Currently, the compacts in our CAD system are either part

material, support material, or an embedded component. An
area for further research is the use of additional material types
to support multi-material parts, or specialized manufacturing
techniques for parts with specific functions (e.g., shafts or
bearing surfaces).

3.2.2 Geometry
The most important information stored for each compact is

the three dimensional geometry that must be deposited and
shaped. Unlike the layers used in other rapid-prototyping
processes, compacts are not 2D slices of a part – each compact
can have complex three dimensional geometry. In fact, the
compacts need not be contiguous; designs frequently have
separate volumes of a single material that can be manufactured
at the same time. In our system, these volumes would be
grouped as a single compact.

3.2.3 Test for “compactness”
The geometry of legal compacts is determined by what is

manufacturable in a single SDM processing cycle, which
includes a deposition step and a shaping step. During the
deposition step, new material is deposited in a liquid form on
top of existing compacts. As a result, the underside of the new
compact is shaped by a casting-like process in which the prior
compacts act as a mold.

During shaping, the geometry of the new compact’s upper
surfaces is formed by CNC milling or EDM. These processes
are limited by tool access constraints. This fact leads to the
primary rule for compact geometry: all machined surfaces must
face “upwards” (relative to the growth direction) [Ramaswami
97]. More precisely, the dot product of the surface normal and
the growth direction must be positive for machined surfaces,
and negative for cast surfaces.

%XLOG�$[LV

�F��2.
�D��QRW�D
FRPSDFW �E��2.

Figure 5. Testing for a legal compact. In (a), a ray in
the build direction leaves and re-enters the shape,
violating the “test for compactness.” To make valid
compacts, the shape can be split at its waist (b), or
rotated by 90º (c)..

Figure 5 illustrates a simple test for compactness. In a valid
compact, any ray cast in the build direction will enter and leave
the solid no more than once. An hourglass shape, aligned with
the build axis, violates this test, and must be split into two
compacts along its “waist.” Algorithms to split an arbitrary
solid model into legal compacts are an area of current research
[Ramaswami 97].

Equation 1 is equivalent to the graphical test shown in
Figure 5. It states that a solid bounded by a surface, S, is a
compact only if there exists no point, p, on S which is an

4 Copyright © 1998 by ASME

inflection point with an undercut surface above an upwards-
facing surface (with respect to the growth axis, Z).









<

∂
∂∧=

∂
∂∃ 00~ 2

2

ZZ
p

SS
(1)

3.3 Applicability to other processes
Although the concept of a compact was invented in regard

to the SDM process, we believe it has applicability to other
layered manufacturing techniques. Nearly all layered
techniques, including stereo-lithography and 3D Printing, use
some form of temporary support structure for overhanging
features. (For stereo-lithography, the support structure is a web-
like framework that is manually removed after fabrication; in
3D Printing, the support structure is unfused powder.)

Determining were support is required, and ensuring that it
is removable at the end of the fabrication process adds
additional planning complexity for these processes. Our design
composition technique, which automatically determines support
compacts, could facilitate these computations.

3.4 Compact lists
In our design system, each primitive includes a compact list

which captures the basic plan for its fabrication. A compact list
is an ordered list of the compacts which would be used to
manufacture the primitive. The designer is free to ignore the
details of the compact lists. In our prototype implementation,
the compacts are created on hidden layers in an AutoCAD
model. Each compact in the list has specifications for:

• Build order

• Material: part, support, or embedded component

• 3D Geometry.

The compact lists for simple shapes (2½D extrusions) can
be generated algorithmically. Compact lists for more complex
shapes will be stored in the design library with the primitive.
Any new design constructed from existing primitives can be
added to the design library as a new primitive.

Because manufacturability rules are specified in terms of
compact geometry and topology, including the compact lists in
the design representation permits on-the-fly evaluation of part
manufacturability. The CAD system can notify the designer
immediately when a new feature produces a non-
manufacturable design. This feedback eliminates the need for
an iterative design-evaluate-revise approach.

Correct operation of the compact list merging algorithm
described in Section 4 requires that the compacts in the compact
list must completely fill the space defined by projecting the
union of all part material in the growth direction to the top and
bottom of the manufacturing workspace. The support material
on top of the part is not required for fabrication, but is required
for the algorithm to function properly.

3.5 Build order
Each compact in the compact list has an integer that

represents its build order; i.e., the compact that will be
manufactured first has build order 1, and so on. In general, there
are many valid build orders; the algorithm described in this
paper produces a single, arbitrary build order. We have begun to
develop an extension to this system that uses a directed graph to
represent all of the possible build orders to permit subsequent
optimization.

3.6 Library elements - Primitives
The system we envision is based on a design library which

contains three dimensional shapes called primitives that can be
used as design building blocks. These primitives can be
combined with standard Boolean operations: union, subtraction,
and intersection. As stated above, to the designer, each
primitive appears as a single 3D solid with arbitrary geometry.
On hidden layers of the CAD drawing, however, is a compact
list, that specifies the manufacturing plan for the primitive.

It is important to realize that the compact list of a primitive
represents a “high-level” process plan for its fabrication; the
compact list specifies the material type and geometry to be
created in each manufacturing step. The library elements do not
include detailed manufacturing data like CNC paths or
deposition parameters. The purpose of the merging algorithm
described below is to combine the compact lists from two
primitives into a new list that represents a feasible process plan
for the new part design.

Maintaining this level of manufacturing information in the
design permits quick manufacturability feedback to the
designer, and potentially gives him partial control over the
fabrication process. In the short term, providing the SDM
manufacturer with this level of process plan information permits
more automation in the planning and manufacturing operations.

3.7 Simple shapes
We define a simple shape as a three dimensional solid

formed by extruding a closed two dimensional curve in the
growth direction. The resulting solid will have an upper and
lower face which are perpendicular to the growth direction, and
a number of side faces which are parallel to the growth
direction. The compact list for a simple shape can be generated
automatically.

4. COMPACT LIST MERGING ALGORITHM
The heart of the design-by-composition approach is a

merging algorithm which allows simple shapes and library
components to be combined to create new designs. When the
designer combines two primitives to form a new design, the
CAD system must combine the corresponding compact lists. We
have developed and implemented an algorithm which can
combine two arbitrary compact lists and will always produce a
valid result.

In this section, we refer to the two source compact lists, A
and B, corresponding to two primitives, either of which may be

5 Copyright © 1998 by ASME

a simple shape, a library element, or an incomplete design.
These lists are combined to form a result list, C. Lower case
letters refer to individual compacts, e.g., a is a compact in A.

4.1 Intersection compacts
When compact lists A and B are combined, the algorithm

finds all the intersections between a compact in A and a
compact in B. The algorithm creates an intersection compact, c,
for every intersection between any a and b. If A contains n
compacts, and B contains m compacts, there are at most n·m
intersection compacts.

The material for an intersection compact is specified by a
truth table (see Figure 6) that depends on the type of merging
operation, addition, subtraction, or intersection. The truth table
is the only part of the algorithm that depends on the merging
operation.

The build order for an intersection compact is the sum of
the build orders of the two source compacts:

order(c) = order(a) + order(b) (2)

Add Subtract Intersect
a b c a b c a b c
P P P P P S P P P
P S P P S P P S S
S P P S P S S P S
S S S S S S S S S

Figure 6. Truth tables for compact list merging
operations. The tables shown specify the material
type (part or support) for a compact, c, which is
formed by the intersection of two source compacts, a
and b.

4.2 Non-intersecting compacts
When two compact lists are combined, portions of some of

the compacts in A or B may not intersect any compact in the
other list. These compacts, after subtraction of any portions that
do intersect, are appended to the result list, C. The build order
of the non-intersected compacts is multiplied by 2. Doubling
the build order produces an arbitrary, valid order for the result
compact list. More complex build order techniques may
produce valid process plans that are more optimal. In the
future, we plan on moving to using a directed graph to represent
all possible manufacturing sequences for a compact list. This

modification will remove many of the current implementations
arbitrary aspects, including this rule.

The material type for the non-intersecting compacts
depends on the merging operation, as shown in the truth tables
in Figure 7.

Add Subtract Intersect
a b c a b c a b c
P P P P P S
S S S S S S

P P P S P S
S S S S S S

Figure 7. Truth tables for non-intersecting compacts.
The geometry of c is the portion of a or b which does
not intersect with any compact in the other list (B or
A, respectively).

For compact lists A and B with n and m compacts,
respectively, the maximum number of non-intersecting
compacts is n+m.

4.3 The algorithm
The rules presented above for intersecting and non-

intersecting compacts are the basis of our compact list merging
algorithm.

4.3.1 Description
Two compact lists can be combined by the algorithm in

Figure 12. Each compact in list A is intersected with each
compact in list B. The intersection solids (if they exist) are then
subtracted from the two source compacts. A truth table (the
function ƒ) which depends on the operation (add, subtract, or
intersection) specifies the material (part or support) of the
intersection compact. This algorithm allows arbitrarily complex
compact lists to be combined.

+ =

(a) (b)

Figure 8. The designer wants to combine the two
primitives in (a) to form the shape in (b).

6 Copyright © 1998 by ASME

(a)
source compacts

(b)
intersection

(c) subtracted
from sources

(d) added to
result

1 2

A B

2

3

2

3

21

1

a b Cc

∩ =

Figure 9. Step 1 of the merging operation. The two compacts shown in (a) are intersected, producing the new
compact shown in (b). The intersection is subtracted from the two source compact lists (c), and is added to the
result list, C, in (d).

2

3
2

3

2

1 2 3
3

∩ =
1

3 ∩ =3 6

2
3
4
5
6

2

3

1

(2)

(9)

Figure 10. Steps 2 and 9 of the merging operation. In step 2, the remaining piece of compact A1 is intersected
with compact B2. In step 9, the remainder of compact A3 is intersected with B3. This produces the final
intersection compact.

Figure 11. Different compact lists for the simple link part in Figure 1 . In (a) the compacts were created by
automatic decomposition software [Ramaswami 97] (b) the complete compact list generated by the merging
algorithm.

7 Copyright © 1998 by ASME

Each compact in the result compact list has a build order.
These build order values, however, are not unique, and there
may be gaps in the numbering sequence. (For example, there
will never be a compact with build order 1). This order does
represent a valid manufacturing plan, however. The sequence
of compacts with equal build order numbers is arbitrary; during
the simplification step described in Section 4.4, the order of
these compacts is adjusted to minimize the number of compacts.

∀�b�∈ B��∀�a�∈�A
QHZ�c�∈�C��

�
 �a�∩ b

a� �a���c
b� �b���c
RUGHU�c�� �RUGHU�a����RUGHU�b�
PDWHULDO�c�� �ƒ�PDWHULDO�a���PDWHULDO�b���RSHUDWLRQ�

∀�b�∈ B
RUGHU�b�� ��•RUGHU�b�
PDWHULDO�b�� �g�PDWHULDO�b���RSHUDWLRQ�

∀�a�∈�A
RUGHU�a�� ��•RUGHU�a�
PDWHULDO�a�� �g�PDWHULDO�a���RSHUDWLRQ�

C� �C�∪ A�∪ B

Figure 12. Compact-list merging algorithm. The
function ƒ is specified by the truth tables shown in
Figure 6. The function g is specified by the truth
tables in Figure 7.

4.3.2 Example
This section illustrates the compact list merging algorithm

with an example. Figure 8 shows the two primitives the designer
is combining, and the resulting shape. Figure 13 shows the
compact lists for the two primitives. (In all illustrations in this
section, the growth direction is vertical.)

2 2

1

3 3

1support

part

A B

Figure 13. The two compact lists that will be
combined.

Figure 9 shows the first step of the merging operation.
Compacts A1 and B1 are intersected to form compact c. The
intersection is subtracted from the two source compacts,

removing a portion of A1 and all of B1. Finally, the intersection
compact is added to the result compact list, C.

In step 2, shown in Figure 10, the remainder of compact A1
is intersected with B2. Again, the intersection is subtracted from
the source compacts and added to the result list. In step 3 (not
shown) the remainder of compact A1 will be intersected with
compact B3. The result of this intersection is a null compact, so
no changes are made to the source or result compact lists. In
step 9, compact A3 (minus the part that was removed by step 8)
is intersected with B3 to produce the final intersection compact.

After step 9, the compacts in list B have been completely
“consumed” by the intersection and subtraction operations.
There are still three compacts in list A, however. These non-
intersecting compacts are added to the result list and their build
orders are doubled. The complete result list is shown in Figure
14(a). A simplification operation, described in Section 4.4,
converts the result list to the compact list shown in Figure
14(b).

(a) (b)

4

6

2
32

4
5
6

1

2

3

Figure 14. The non-intersecting pieces of the A
compacts are added to the result list, with the build
orders doubled. There are no non-intersecting B
compacts in this example. (a) shows the complete
result compact list. (b) shows the result compact list
after simplification (Section 4.4).

4.4 Compact list simplification
The merging algorithm produces a result compact list with

many compacts (Figure 14(a)). In the worst case, merging n
primitives which each contain m compacts produces a compact
list with mn+nm compacts.

The result compact list can be simplified considerably by
combining (with a Boolean union) sequential compacts of the
same material. Figure 14(b) shows the compact list for the part
after simplification. Currently, we simplify the compact list after
every merging operation to produce the minimum number of
compacts. An area for future refinement is to investigate
alternative build orders to optimize other figures of merit.

4.5 Modifications to the algorithm
The compact-list merging algorithm presented above can

be modified to support several extensions including embedded
components and special merging operations.

8 Copyright © 1998 by ASME

4.5.1 Supporting embedded components
To support embedded components, the primary change to

the algorithm presented above is to create a new material type,
“embedded.” Space limitations preclude a discussion here, but
the extension is straightforward. The basic difference is that,
unlike the existing part and support materials, embedded
component compacts cannot be subdivided by primitive
merging operations.

4.5.2 Build order graph
The compact list merging algorithm maintains a valid, but

arbitrary, build order for the compacts in the process plan. We
have begun development of a directed graph (called the
Compact Adjacency Graph, or CAG) to represent the order
dependencies between compacts. [Pinilla, Kao, et al. 97] This
compact adjacency graph is capable of representing all possible
build orders for a given set of compacts. This representation is a
least-commitment approach which allows more opportunity to
optimize the build sequence based on design requirements, or
even to make scheduling decisions during fabrication based on
machine availability and workload.

Figure 15. The shaded surfaces locate bearings in
this link.

Figure 15 shows the surfaces of the part from Figure 1
which have critical tolerances. Using the CAG representation
could allow the designer or manufacturer to select a process
plan (a subset of the graph) that manufactures these surfaces at
the same time, ensuring that they will be properly aligned.

4.5.3 An algorithm for fluid piping
A horizontal pipe can be used as a library primitive. The

corresponding compact list consists of 5 compacts: support
material above and below, the upper and lower halves of the
pipe, and the pipe’s interior.

When two pipes intersect, the designer probably, but not
necessarily, wants to form a fluid connection. With the standard
algorithm presented in Section 4, the interior and exterior of the

pipes would be support material, and the pipe walls would be
part material. Using the Add truth table, two intersecting pipes
would form a cross with no fluid connections between the four
ports. Adding a third material type, fluid, for the interior of the
pipe, and extending the truth table as shown in Figure 16,
causes two intersecting pipes to form a fluid connection.

Add Pipes
a b c
P P P
P S P
P F F
F P F
F S F
F F F
S P P
S S S
S F F

Figure 16. Pipe merging truth table. Because the
intersection of pipe and fluid is fluid, two intersecting
pipes will form a fluid connection.

5. IMPLEMENTATION
The compact merging algorithm has been implemented as

an ARX (AutoCAD Runtime Extension) application that works
with AutoCAD Release 14. This implementation allows a
designer to create cylindrical and rectangular prism primitives
which can be manipulated by standard AutoCAD commands.
Once the designer has created and positioned primitives, they
can be merged together. The output of the merging operation is
a new, more complex primitive which can be saved in a design
library and used in future designs.

Part and support material compacts are automatically
generated on hidden layers of the drawing. The compact lists of
both primitives are then combined using the algorithm
described above. Both addition and subtraction operations are
supported (an intersection operation can be easily added). On
the visible layer, the designer sees the primitives combine with
the appropriate action (either union or subtraction).

The net result is that the designer can create parts using the
familiar AutoCAD interface. With the part and support layers
hidden, this system behaves the same as the standard AutoCAD
3D modeling interface. The ARX application can then output
all of the files necessary for the SDM process planner to
manufacture the part. (Currently, because of software
limitations in the Stanford SDM facility, part fabrication
involves several manual steps.)

The design-by-composition ARX implementation is part of
a broader effort to provide a design/manufacturing interface for
SDM and related prototyping processes. In this interface,
designers can use a web-based broker to find suitable
prototyping processes and facilities, as well as libraries of parts

9 Copyright © 1998 by ASME

and tools for design and manufacturing analysis. The ARX
application described in this paper will be available as a
downloadable "plug in" for AutoCAD.

ACKNOWLEDGMENTS
Thanks are due to members of the Stanford CDR and RPL

project teams for their advice regarding this paper. This work
has been supported by the National Science Foundation under
grant MIP9617994.

REFERENCES
Merz, R., Prinz, F.B., Ramaswami, K., Terk, M., Weiss, L.,
"Shape Deposition Manufacturing", Proceedings of the Solid
Freeform Fabrication Symposium, University of Texas at
Austin, August 8-10, 1994.

Pinilla, J.M., Kao, J.H., Binnard, M., Prinz, F.B., "The
Compact Graph Format: an Interchange Standard for Solid
Freeform Fabrication", NIST Measurement and Standards
Issues in Rapid Prototyping Workshop, Gaithersburg, MD,
1997

Ramaswami, K., “Process Planning for Shape Deposition
Manufacturing,” PhD Dissertation, Stanford University,
Stanford, California, 1997.

Requicha, A., Chan, S., “Representation of Geometric
Features, Tolerances, and Attributes in Solid Modelers
Based on Constructive Geometry,” IEEE Journal of Robotics
and Automation, Vol. RA-2 No. 3, September, 1986.

Requicha, A., Voelcker, H., “Boolean Operations in Solid
Modeling: Boundary Evaluation and Merging Algorithms,”
Proceedings of the IEEE, Vol. 3 No. 1, January, 1985.

Weiss, L.E., Merz, R., Prinz, F.B., Neplotnik, G.,
Padmanabhan, P., Schultz, L., Ramaswami, K., "Layered
Manufacturing of Heterogeneous Structures", submitted to
the Journal of Manufacturing Systems, 1996.

Weiss, L.E., Prinz, F.B., Neplotnik, G., Padmanabhan, P.,
Schultz, L., Merz, R., "Shape Deposition Manufacturing of
Wearable Computers", Proceedings of the Solid Freeform
Fabrication Symposium, The University of Texas at Austin,
August 10-12, 1996.

Woodbury, R., Carlson, C., Heisserman, J., “Geometric Design
Spaces,” EDRC Memo 48-13-89, Engineering Design Research
Center, Carnegie Mellon University, Pittsburgh, Pennsylvania,
1989.

