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I.  Overview 
 
The Dynamic Design Lab has developed a vehicle dynamics test bed using a one quarter-
scale radio-controlled car.  The car has been equipped with an onboard computer and 
various sensors.  The purpose of this report is to describe the major features of the car, 
document operational procedures, and demonstrate several research applications. 
 
 
II.  Background 
 
There are several advantages to using a reduced-scale model instead of a full-scale car for 
experimental investigation of vehicle dynamics: 
! The cost of a full-scale vehicle is prohibitive in terms of initial purchase and 

replacement parts. 
! It is easier to make modifications to a reduced-scale model. 
! A reduced-scale model requires less space and is much safer to operate. 

Reduced-scale radio-controlled models of various sizes and types are commercially 
available, typically for recreational use.  Initially, we purchased and tested a one tenth-
scale model powered by a DC motor.  Limited space for mounting additional equipment 
dictated the need for a larger platform.  Next we tried a one eight-scale, gasoline-powered 
model, but it suffered similar space constraints.  The one quarter-scale platform was 
finally selected.  
 
 

 
 

Three iterations of the RC car model test bed. 
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III.  Mechanical Hardware 
 
RC car model 
 
Purchased from New Era Models of Nashua, NH, our one quarter-scale car arrived with 
the engine and drivetrain installed; we had to assemble the suspension, wheels, servo 
motor systems, and fuel system from the parts supplied.  The frame is made of welded 
tubular steel.  The engine, manufactured by Zenoah, is a single-cylinder two-stroke 
running on a 25:1 mixture of gasoline and two-cycle engine oil.  The drivetrain consists 
of a centrifugal clutch driving the rear wheels through a single belt.  Front suspension is 
double-wishbone with anti-roll bar.  Rear suspension is rigid axle located by trailing arms 
and two sets of unequal links.  The car rides on solid rubber tires mounted on composite 
wheels.  Stopping ability comes from a single disc and caliper attached at the engine 
output shaft.  A single servo motor actuates the throttle and brake; two servo motors 
working in parallel actuate the steering.  The actuating signals come from a radio receiver 
which picks up commands initiated by the operator through the steering wheel, 
brake/throttle lever, and auxiliary switch on the hand-held transmitter.   
 
Customized hardware 
 
We designed our own hardware for mounting the computer, circuit boards, and sensors.  
The computer and circuit boards are enclosed in a removable sheet metal box, 
approximately 12” by 8” by 5” in dimension.  Aluminum plates—attached to the frame 
via plastic ties—provide mounting space for sensors and batteries.  The batteries can be 
attached at different locations on the car to change weight distribution.  Aluminum side 
skirts, while protecting the side of the car, serve as additional mounting points.  We also 
extended the exhaust outlet beyond the body to avoid depositing exhaust residue on the 
car. 
 
 

 
 

Computer enclosure. 
 
 

 
 

Yaw rate sensor and battery attached to 
aluminum plate. 
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Hall effect sensor mounted to aluminum  
side skirt. 

 
 

Custom-made exhaust pipe. 

 
 
 
 
IV.  Electrical Hardware 
 
Single board computer 
 
To make the car useful for dynamics research, we installed an onboard computer system 
which gives us the ability to monitor vehicle behavior and eventually implement our own 
control systems.  The single board computer from VersaLogic features a 300 MHz AMD 
K6 processor, bootable Disk On Chip memory device, 16 digital input/output ports, 8 
analog input/output ports, and 5 timer/counter ports.  We added 16 external analog and 
digital input/output ports through the PC/104 expansion module.  Initial setup procedures 
for the single board computer are listed in Appendix A.  The computer interfaces with the 
radio receiver, servo motors, and sensors through two separate circuit boards which are 
explained below.  A diagram of the entire circuit is found in Appendix E. 
 
Radio interface circuit 
 
The radio interface board (Appendix F) contains circuitry to intercept and interpret the 
radio signals from the receiver and send modified (or unmodified) signals to the servo 
motors.  A PIC programmable microcontroller continuously monitors each of the three 
receiver channels corresponding to the steering, brake/throttle, and auxiliary switch.  The 
single board computer receives information from the PIC through the external digital I/O 
ports (Appendix G).  After recording and processing the data, the computer sends 
modified (or unmodified) signals to the steering and brake/throttle servo motors through 
the timer/counter ports.  The connectors are designed so that each of the receiver 
channels can be connected directly to the servo motors to bypass the computer.  In this 
mode the computer does not record radio signal data. 
 



 6 

Sensor interface circuit 
 
The sensor interface board (Appendix H) provides power to and receives signals from all 
of the car’s sensors.  Thus far we have installed the following sensors: angular rate 
sensor, two-axis accelerometer, and wheel speed sensor.  The output of the angular rate 
sensor—which  measures the yaw rate of the car—is a voltage level proportional to the 
yaw rate.  The accelerometer measures lateral and longitudinal acceleration; its duty 
cycle output is converted into an analog signal by low-pass filtering and then buffered 
before feeding into the analog I/O of the computer (Appendix I).  Buffering the signal is 
necessary to prevent the input port’s current draw from altering the signal voltage level.  
The wheel speed sensor consists of a hall effect gear tooth sensor with pull-up resistor 
and a ferrous metal gear mounted to the engine output shaft.   Each passing of a gear 
tooth generates a square pulse in the sensor output; the frequency of the pulses 
corresponds to shaft rotational speed.  A PIC microcontroller keeps count of the pulses 
and sends this information to the computer through the digital I/O ports. 
   
Power 
 
All of the car’s electronics except for the servo motors and radio receiver run on 5 volts 
DC.  To supply enough current to the computer, which draws over 3 amps, we step the 
voltage down from a 12 volt rechargeable lead acid battery through a 25 W DC-DC 
converter.  Main power and ground wires go to the computer and each of the two circuit 
boards.  The servo motors run on a 7.2 volt 6-cell rechargeable battery with power routed 
through the receiver and radio interface board but separate from the 5 volt supply.  The 
grounds of both batteries are connected together at the chassis.   
 
           
V.  Software 
 
Real-Time Workshop 
 
We developed embedded application software for our RC car test bed using MATLAB’s 
Simulink modeling environment.  MATLAB’s Real-Time Workshop generates C code 
directly from the Simulink model; this code executes in a target environment (such as 
DOS) on the single board computer and performs the primary functions of data 
acquisition and servo motor actuation.  Appendix G explains the procedures for 
generating C code from a Simulink model using Real-Time Workshop.   
 
Simulink model 
 
The Simulink model below is designed to demonstrate the basic functionality of the test 
bed.  The three blocks at the left represent incoming data from the sensors and radio 
receiver.  The data is processed if necessary and output to a data file.  In addition, this 
model outputs signals to the steering and brake/throttle servos, represented by the block 
at the right of the submodel; these signals are essentially the unmodified receiver signals.  
As a safety precaution, a braking feature applies the brake several seconds before the end 
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of the simulation to prevent the car from running away.  After the simulation ends, the 
servos no longer receive control signals from the computer and tend to stay in the final 
commanded position.  To facilitate changing parameter values, especially those that are 
repeated several times in the model, most parameters are left as variables and assigned 
values in an m-file (Appendix L).     
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Simulink model: cartest.mdl. 
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Servo output sub-model. 

 
 
S-functions 
 
Device drivers handle access to the I/O hardware of the computer.  In cartest.mdl, the 
three input blocks and one output block are actually Simulink s-functions that refer to 
customized device driver code (listed in Appendix M).  The code, which is called each 
sampling period of the simulation, performs data transfer and storage operations, defines 
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the I/O addresses, and sets the number of inputs or outputs.  As described below, the 
three s-functions (vsbcrad, vsbc6ad, vsbcenc) at the left of the Simulink model each serve 
a function in data acquisition (from radio receiver or sensors), while the s-function block 
on the right (vsbcser) handles servo actuation. 
 
The purpose of the ‘vsbcrad’ driver, in conjunction with the PIC radio monitor, is to 
handle data acquisition from the radio receiver.  It sets the eight lower bits of the digital 
I/O address to input and the eight upper bits to output.  All eight lower bits serve as data 
lines from the PIC, while one of the upper bits is the data transfer enable line (the rest are 
unused).  ‘Vsbcser’ uses the computer’s counter feature to create and send PWM signals 
to the servos.  Two counter lines are used: one for the steering servo and the other for the 
brake/throttle servo.  Given a desired pulse width value, the counter automatically outputs 
the pulse width-modulated (PWM) signal.  Due to an unavoidable characteristic of the 
counter, the PWM signals must be inverted before passing on to the servos. 
 
On the sensor side, ‘vsbc6ad’ takes care of analog-to-digital conversion for the yaw rate 
and two accelerometer measurements through the analog lines.  Lastly, the ‘vsbcenc’ 
driver works with the PIC pulse monitor to obtain wheel speed information.  Similar to 
‘vsbcrad,’ there are eight data lines and one data transfer enable line.  Actual vehicle 
speed in meters per second is calculated from a formula involving the newest pulse count, 
the last pulse count (stored from the previous sampling period), number of teeth in the 
gear, drive ratio, tire diameter, and sampling rate.  We chose to place this calculation in 
the Simulink model to ease future modification of parameter values.   
 
PIC microcontroller 
 
The wheel speed sensor and radio receiver signals must be monitored continuously to 
capture rising and falling edges; the only way for the computer to do this without taking 
up all of the computing time is to use interrupts.  An alternative approach is to relegate 
the continuous tasks to a separate programmable devices and periodically seek updates 
from the devices.  The PIC is an inexpensive, easy-to-use microcontroller especially 
suited for this type of low level task, and more importantly, it leaves the computer free to 
deal with the higher level operations.  The computer retrieves the critical information—
wheel speed pulse counts and radio PWM pulse width—from the PICs only when 
needed.  A transfer is typically requested by sending a pulse over an enable line; the PIC 
responds with a single set of data over the data lines.  In our application, there are 
multiple sets of data (three radio channels, and up to four wheel speed signals) and 
insufficient I/O ports to give each set its own data lines.  As a solution, multiple pulses 
are sent through the enable line, with each subsequent pulse initiating data transfer for the 
next set over the same data lines.   
 
Appendix J describes how we use a PIC to measure pulse width of the three PWM 
receiver channels.  The pulses occur every 17 milliseconds with a nominal duty cycle of 9 
percent, or a pulse width of 1.5 millisecond.  Full range of steering (also full brake to full 
throttle, auxiliary switch on to switch off) is 6 percent to 12 percent duty cycle (1.0 to 2.0 
millisecond pulse width).  The three PWM signals are not in phase, but staggered such 



 9 

that when the pulse width of the first channel ends, the second channel’s pulse width 
begins—and the third channel follows at the end of the second.  The PIC measures pulse 
width by waiting for a rising edge, starting the timer, waiting for the signal to return to 
low, and recording the timer value at that instant.  The timer is then reset for the next 
pulse width.  In order to match the timer frequency to the pulse width and to avoid 
overflowing the timer before reset, we apply a prescaler of 32 to the 10 MHz PIC 
operating speed.  The timer value has a maximum length of eight bits (0 to 255 in base 
ten); with the prescaler, neutral position (steering centered, no throttle or brake applied) 
corresponds with 118 on the base ten scale, and full range goes from approximately 80 to 
160.   
 
The wheel speed PIC employs a programming strategy similar to the radio receiver PIC 
except that each rising edge triggers a register to increment by one (see Appendix K).  
Although the wheel speed PIC was programmed with a four-sensor capacity, only one 
sensor is being used at the present time.  The assembly language code written for the two 
PICs can be found in Appendix N. 
 
Single board access 
 
We have been using one of three methods to access the single board computer’s ‘c:’ drive 
(Disk On Chip) and to run executable files on the car.  The first method is to hook up a 
monitor, keyboard, and mouse to the single board computer running on DOS.  File 
transfer can be done by attaching a floppy disk drive.  The other two methods, which are 
better suited for field testing, allow access via laptop computer.  One method involves 
communication over a cable connecting the COM ports on the laptop and computer; a 
terminal window on the laptop provides the interface, and file transfer is by the Kermit 
program.  We recently implemented wireless Ethernet communication and at the same 
time switched to the XPC target environment.   
 
 
VI.  Applications 
 
Radio signal filter 
 
One of the problems we noticed when testing the RC car with the computer system is that 
when the car moves farther away from the transmitter, the computer begins to record 
increasingly noisy radio signals.  This noise, which appears as wildly fluctuating spikes 
in the pulse width values, also occurs near strong sources of electromagnetic radiation 
such as power lines.  Frequently the noise is of such magnitude that it cause the servos to 
twist beyond the normal range of motion.  To prevent damage to the servo systems and, 
more critically, loss of vehicle control, we tried adding a radio signal filter block in the 
Simulink model.  The filter is designed to eliminate those signals that reach beyond the 
normal servo operating range (approximately 80 to 160 pulse width units).   
 
Another annoying, but less dangerous noise problem occurs when the servos are in their 
neutral position or being commanded to hold a constant position.  The discretization of 
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the radio signals by the computer causes the servos to jitter as they flip between two 
adjacent values closest to the commanded value.  To maintain smooth servo action, the 
filter holds the previous value for the current time step if the new value is less than two 
units (or bit changes) away from the old value.  Testing shows that the filter block, shown 
below, does not completely eliminate all noise problems, but at least it minimizes the 
erratic servo behavior that would otherwise occur.  
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Simulink model with filter: cartestf.mdl. 
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Filter sub-model. 

 
Speed control 
 
Our first attempt at implementing a controller on the RC car test bed was to add a speed 
control system based on the wheel speed sensor output.  The ability to hold the car at 
constant speed during handling maneuvers is necessary for analyzing certain aspects of 
vehicle behavior and drawing meaningful comparisons between sets of test data.  Control 
is accomplished with simple proportional gain feedback.  In addition to speed control, the 
Simulink model shown below contains a feature for performing ramp steer maneuvers 
using the auxiliary switch.  Appendix C explains the speed control/ramp steer program in 
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greater detail.  A few selected results from a step steer and ramp steer test are shown in 
Appendix D.   
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Simulink model: spdc.mdl. 
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Ramp steer (switch signal) sub-model. 

 
 
VII.  Work in Progress 
 
Future vehicle dynamics and controls work will require knowledge of the various vehicle 
parameters.  So far we have measured mass, yaw moment of inertia, center of gravity 
location, and steering ratio.  This data is available in a separate report. 
 
We have recently made a number of improvements to the RC car test bed by switching to 
the more user-friendly XPC target environment and wireless Ethernet communication 
between computer and laptop.  We have also enhanced operating safety by adding an 
independent, electronically-controlled engine kill switch that is directly activated via the 
auxiliary switch on the transmitter.  These improvements will be detailed in a later report.  
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Appendix A:  Single board computer setup procedure 
 

1. Change jumper V10 to 1-2 position to accommodate Disk On Chip. 
2. Install RAM and DOC. 
3. Boot without floppy, go to ‘Setup.’  Setup menu can always be reached during 

boot up by repeatedly pressing the ‘Delete’ key. 
4. Enable DOC by setting ‘32 Pin Socket’ in Advanced Configuration to ‘DOC.’ 
5. Select drive C to be in ‘Boot Order’ in Basic Configuration. 
6. Boot with PC DOS, do not install. 
7. Type ‘sys c:’ at the prompt. 
8. Reboot with PC DOS, install. 
9. Create ‘kermit’ directory on DOC and copy all Kermit files to the directory. 
10. Edit ‘autoexec.bat’ file for Kermit.  It should appear as follows: 

@ECHO OFF 
PATH=C:\DOS;C:\KERMIT 
SET TEMP=C:\DOS 
C:\DOS\MOUSE.COM 
C:\DOS\DOSKEY.COM 
kermit.exe exit 
ctty com1 

11. Create ‘rtwtest’ directory.  Copy ‘dos4gw.exe’ to directory. 
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Appendix B:  Code generation with Real-Time Workshop 
 

1. Create an s-function block found under 'Simulink, Functions & Tables.’ 
2. Double click on the block. 
3. Enter the name of the s-function (ex. vsbenc) and its parameters (ex. 

numChannels,sampTime). 
4. Choose 'Mask s-function' under the 'Edit' menu. 
5. Select 'Initialization' tab. 
6. Enter parameter 'Prompt' (ex. Number of Channels) and corresponding 'Variable' 

name (ex. numChannels). 
7. Parameters can be changed later by choosing 'Edit Mask' under 'Edit' menu.  
8. Create the rest of the Simulink model. 
9. Set up simulation parameters, such as end time and time step, in 'RTW Options...' 

under the 'Tools' menu.  ‘Solver’ is discrete, fixed-step.  Under ‘Real-Time 
Workshop…Code generation.,’ choose ‘drt.tlc’ (DOS) as the system target file.  
This choice requires that the Watcom C compiler be installed on the machine. 

10. Run the associated MATLAB m-file (ex. carfile.m) to supply numerical values to 
any variables used in the model. 

11. Compile the s-function code at the MATLAB command line (ex. mex vsbenc.c).  
Code must be re-compiled following any changes. 

12. Build the simulation using 'RTW Build' under the 'Tools' menu.  This function 
generates C code directly from the model and creates a DOS executable file (ex. 
cartest.exe) of the same name.  Rebuild simulation to apply changes to s-functions 
or model. 
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Appendix C:  RC Car Operating Procedures 
 
1.  Accessing the onboard computer 
 
You will be accessing the onboard computer via the laptop.  First, connect the serial cable 
from the laptop to the communication port on the car.  Double click on the ‘hypercar’ 
icon to open up a terminal window.  Turn on main power to boot up the onboard 
computer (switch on the left side skirt of the car).  After waiting about 30 seconds, a ‘c:\’ 
DOS prompt should appear in the terminal window.  This is the ‘c:\’ drive of the onboard 
computer.   
 
 
2.  Transferring an executable file to the computer 
 
You only need to do this once or when you change the Simulink model.  Run ‘kermit’ in 
the terminal window.  Type ‘receive’ and choose ‘send file’ in the ‘File Transfer’ pull-
down menu.  Type in the DOS executable file name, ‘spdc.exe.’  Destination is the 
‘c:\rtwtest’ directory.  The transfer takes less than a minute. 
 
   
3.  Executing the ramp steer program 
 
Open the ‘c:\rtwtest’ directory.  Type ‘spdc’ and press ‘return.’  The ramp steer program 
is now running and you are ready to begin performing the test.  Make sure there is 
auxiliary power to the sensor and radio signal circuitry (switch on right side of box).  You 
can now disconnect the serial cable from the car.  
 
 
4.  Turning on the servo motors 
 
First, turn on the handheld transmitter.  Then, turn on power to the servo motors (black 
switch attached to the right side of box).  You want to avoid turning on the servo motors 
when the transmitter is off or when the program is not running.  Otherwise, irregular 
servo signals may cause the motors to twist beyond their normal range of motion.   
 
 
5.  Starting the engine 
 
Always make sure the brakes are applied before starting the engine.  As an extra 
precaution, you may want to have someone hold the rear wheels off the ground or stand 
in front of the car to prevent it from running away.  If the engine is cold, pump the fuel 
reservoir two or three times, close the choke, and pull the starter cord.  To aid in starting, 
open the throttle slightly.  Let the engine idle for about a minute, then open the choke 
fully.  To start a warm engine, just pull the starter cord.  To kill the engine, depress the 
red button on the engine cover. 
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6.  Performing the ramp steer test 
 
The ramp steer program does two things:  1) it maintains the car at a steady speed when 
you hold the throttle controller at a constant position, and 2) it initiates a ramp steering 
input when you engage the auxiliary switch on the handheld controller.  To perform the 
ramp steer test, accelerate the car to its maximum preset speed (throttle switch fully 
open).  Hit the auxiliary switch to initiate the ramp steer.  When the steering has reached 
full lock, move the auxiliary switch in the opposite direction to return the steering to the 
straight ahead position.  Be prepared to apply the brakes in case anything goes wrong.  
The test program will run for a preset length of time, and the car will brake automatically 
when the program ends. 
 
7.  Adjusting the transmitter 
 
After running the program for the first time, you may wish to change the transmitter 
settings.  To change to maximum throttle opening when the throttle lever is fully 
engaged, press the ‘mode’ button on the transmitter repeatedly until the display reads 
‘th.atv.’  Press ‘+’ to increase or decrease the throttle opening.  To switch the response 
direction of the throttle lever and steering wheel, press the ‘mode’ and ‘select’ buttons at 
the same time.  Press ‘mode’ again to reach the steering (‘st’) display, then ‘+’ to switch 
direction to ‘reverse’ or ‘normal.’  Press ‘select’ to go to the throttle (‘th’) display.       
 
8.  Transferring test data to the laptop 
 
The sensor and radio signal data collected during the test is stored on the onboard 
computer in file ‘spdc.mat.’  To transfer the file to the laptop, reconnect the serial cable 
to the car.  Run ‘kermit’ in the terminal window.  Type ‘send spdc.mat’ and press 
‘return.’  Choose ‘receive’ in the ‘File Transfer’ pull-down menu and click ‘OK.’  The 
file takes several minutes to download.  Exit Kermit when the transfer is completed.  You 
can now load the file in MATLAB to view the data. 
 
 
9.  Format of ‘spdc.mat’       
 
The output file consists of a time vector ‘rt-tout’ and 12 columns of data, ‘rt_yout’: 
 

1. yaw rate (V) 
2. lateral acceleration (V) 
3. longitudinal acceleration (V) 
4. wheel speed (m/s) 
5. wheel speed (m/s)—not connected 
6. wheel speed (m/s)—not connected 
7. wheel speed (m/s)—not connected 
8. signal from steering controller (pulse width) 
9. signal from throttle/brake controller (pulse width) 
10. signal from auxiliary switch (pulse width) 
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11. signal to steering servo (pulse width) 
12. signal to throttle/brake servo (pulse width) 

 
Notes: 
! Data column 11 does not indicate saturation of the ramp input (when steering 

reaches limit).   
! Yaw rate sensor saturates at 64 degrees per second. 
! Sensor outputs are voltages and must be scaled to appropriate units. 
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Appendix D:  Sample test data 
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Appendix E:  Circuit diagram 
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Appendix F:  Radio interface circuit board 
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Appendix G:  I/O pinouts for radio interface board 
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Appendix H:  Sensor interface circuit board 
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Appendix I:  I/O pinouts for sensor interface board 
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Appendix J:  Measuring pulse width with a PIC 
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Appendix K:  Counting pulses with a PIC 
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Appendix L:  Simulink m-file 
 
clear all 
 
% sampling period (s) 
Ts = 0.02 
 
% simulation end time (s) 
Tf = 60 
 
% servo output (pulse width units) 
brake = 85 
 
% filter (pulse width units) 
ch1off = 118 
ch2off = 118 
ch3off = 118 
ch1max = 38 
ch2max = 38 
ch3max = 38 
 
% scale pulse counts to m/s 
tire_circ = 0.479 
gear_teeth = 30 
drive_ratio = 4.5 
speed = tire_circ / (Ts*gear_teeth*drive_ratio) 
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Appendix M:  Device Drivers 
 
/*  
 *  vsbcrad.c:   Device Driver for External Digital I/O 
 *   for Radio Signal Interception 
 *   py 12/14/99 
 *   py 3/5/00 revised 
*   Based on sfuntmpl.c: C template for a level 2 S-function. 

 */ 
 
#define S_FUNCTION_LEVEL 2 
#define S_FUNCTION_NAME  vsbcrad 
#include  <stdlib.h>   
#include “simstruc.h” 
 
/*=========================================================================* 
 * Number of S-function Parameters and macros to access from the SimStruct * 
 *=========================================================================*/ 
 
#define NUM_PARAMS                   (2) 
#define NUM_CHANNELS_PARAM           (ssGetSFcnParam(S,0)) 
#define SAMPLE_TIME_PARAM            (ssGetSFcnParam(S,1))  
 
/*==================================================* 
 * Macros to access the S-function parameter values * 
 *==================================================*/ 
 
#define NUM_CHANNELS                 ((uint_T) mxGetPr(NUM_CHANNELS_PARAM)[0]) 
#define AD_SAMPLE_TIME               ((uint_T) mxGetPr(SAMPLE_TIME_PARAM)[0]) 
 
/*=======================================* 
 * Addresses for Timer/Counter Registers * 
 *=======================================*/ 
 
#define CONTROL         (0x300) 
#define PARWLO          (0x306) 
#define PARWHI          (0x307) 
#define PARRLO          (0x306) 
#define PARRHI          (0x307) 
 
/*====================* 
 * S-function methods * 
 *====================*/ 
 
/* Function: mdlInitializeSizes =============================================== 
 * Abstract: 
 * The sizes information is used by Simulink to determine the S-function 
 * block’s characteristics (number of inputs, outputs, states, etc.). 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    ssSetNumSFcnParams(S, NUM_PARAMS);  /* Number of expected parameters */ 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        /* Return if number of expected != number of actual parameters */ 
        return; 
    } 
 
    ssSetNumContStates(S, 0); 
    ssSetNumDiscStates(S, 0); 
 
    ssSetNumInputPorts(S, 0); 
 
    ssSetNumOutputPorts(S, 1); 
    ssSetOutputPortWidth(S, 0, NUM_CHANNELS);   
 
    ssSetNumSampleTimes(S, 1); 
    ssSetNumRWork(S, 0); 
    ssSetNumIWork(S, 0); 
    ssSetNumPWork(S, 0); 
    ssSetNumModes(S, 0); 
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    ssSetNumNonsampledZCs(S, 0); 
 
    ssSetOptions(S, 0); 
} 
 
/* Function: mdlInitializeSampleTimes ========================================= 
 * Abstract: 
 * This function is used to specify the sample time(s) for your 
 * S-function. You must register the same number of sample times as 
 * specified in ssSetNumSampleTimes. 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, AD_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
 
/* Function: mdlOutputs ======================================================= 
 * Abstract: 
 * In this function, you compute the outputs of your S-function 
 * block. Generally outputs are placed in the output vector, ssGetY(S). 
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
    real_T  *Radio = ssGetOutputPortRealSignal(S,0); 
    uint_T  i,j; 
 
    outp(CONTROL,0x80); 
 
    for (i = 0; i < NUM_CHANNELS; i++)  
    {          
      outp(PARWHI,0x01);               // set enable high and delay for PIC 
 for (j = 0; j < 10000; j++) 
 { 
 } 
     
 Radio[i] = inp(PARRLO);        // get pulse width for channel i 
      
 outp(PARWHI,0x00);                // set enable low and delay for PIC 
 for (j = 0; j < 10000; j++) 
 { 
 } 
    } 
} 
 
/*=============================* 
 * Required S-function trailer * 
 *=============================*/ 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include “simulink.c”      /* MEX-file interface mechanism */ 
#else 
#include “cg_sfun.h”       /* Code generation registration function */ 
#endif 
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/*  
 *  vsbcser.c:   Device Driver for Timer/Counter 
 *               for PWM Signal Output to Servos 
 *   py 12/14/99 
 *   py 3/5/00 revised 
 *               Based on sfuntmpl.c: C template for a level 2 S-function. 
 */ 
 
#define S_FUNCTION_LEVEL 2 
#define S_FUNCTION_NAME  vsbcser 
#include  <stdlib.h>   
#include "simstruc.h" 
 
/*=========================================================================* 
 * Number of S-function Parameters and macros to access from the SimStruct * 
 *=========================================================================*/ 
 
#define NUM_PARAMS                   (2) 
#define NUM_CHANNELS_PARAM           (ssGetSFcnParam(S,0)) 
#define SAMPLE_TIME_PARAM            (ssGetSFcnParam(S,1))  
 
/*==================================================* 
 * Macros to access the S-function parameter values * 
 *==================================================*/ 
 
#define NUM_CHANNELS                 ((uint_T) mxGetPr(NUM_CHANNELS_PARAM)[0]) 
#define AD_SAMPLE_TIME               ((uint_T) mxGetPr(SAMPLE_TIME_PARAM)[0]) 
 
/*=======================================* 
 * Addresses for Timer/Counter Registers * 
 *=======================================*/ 
 
#define TCW_ADDRESS         (0x47) 
#define TCNT_ADDRESS         (0x44) 
 
/*====================* 
 * S-function methods * 
 *====================*/ 
 
/* Function: mdlInitializeSizes =============================================== 
 * Abstract: 
 * The sizes information is used by Simulink to determine the S-function 
 * block’s characteristics (number of inputs, outputs, states, etc.). 
 */ 
 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    ssSetNumSFcnParams(S, NUM_PARAMS);  /* Number of expected parameters */ 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        /* Return if number of expected != number of actual parameters */ 
        return; 
    } 
 
    ssSetNumContStates(S, 0); 
    ssSetNumDiscStates(S, 0); 
 
    ssSetNumInputPorts(S, 1); 
    ssSetInputPortWidth(S, 0, NUM_CHANNELS); 
 
    ssSetNumOutputPorts(S, 0); 
 
    ssSetNumSampleTimes(S, 1); 
    ssSetNumRWork(S, 0); 
    ssSetNumIWork(S, 0); 
    ssSetNumPWork(S, 0); 
    ssSetNumModes(S, 0); 
    ssSetNumNonsampledZCs(S, 0); 
 
    ssSetOptions(S, 0); 
} 
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/* Function: mdlInitializeSampleTimes ========================================= 
 * Abstract: 
 * This function is used to specify the sample time(s) for your 
 * S-function. You must register the same number of sample times as 
 * specified in ssSetNumSampleTimes. 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, AD_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
 
/* Function: mdlOutputs ======================================================= 
Abstract: 
In this function, you compute the outputs of your S-function 
block. Generally outputs are placed in the output vector, ssGetY(S). 
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
    InputRealPtrsType NewSignal = ssGetInputPortRealSignalPtrs(S,0);     
    uint_T  i,j; 
    real_T  Servo[2],Time; 
    int_T   Counts,LSB,MSB; 
 
    for (i = 0; i < 2; i++)  
    {          
       Servo[i] = *NewSignal[i]; 
    } 
 
    for (j = 0; j < 2; j++)   
    { 

Time = (Servo[j]*4*32)/10;  // calculate duration of pulse (sec*10^6) 
       Counts = 6 * Time;       // number of counts while low 
       LSB = Counts % 256;   // least significant byte of counts 
       MSB = Counts / 256;      // most significant byte of counts 
       outp(TCW_ADDRESS,(0x30+64*j));  // write control word to register 
       outp(TCNT_ADDRESS+j,LSB);  // write counts to counter register 
       outp(TCNT_ADDRESS+j,MSB);  
    } 
} 
 
/*=============================* 
 * Required S-function trailer * 
 *=============================*/ 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include “simulink.c”      /* MEX-file interface mechanism */ 
#else 
#include “cg_sfun.h”       /* Code generation registration function */ 
#endif 
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/*  
 *  vsbc6ad.c:  A/D Device Driver for 8 Channels on VersaLogic VSBC-6 Board 
 *  jcg 18-06-99 
 * 
 *  Based on sfuntmpl.c: C template for a level 2 S-function. 
 */ 
 
#define S_FUNCTION_LEVEL 2 
#define S_FUNCTION_NAME  vsbc6ad 
#include  <stdlib.h>   
#include “simstruc.h” 
 
/*=========================================================================* 
 * Number of S-function Parameters and macros to access from the SimStruct * 
 *=========================================================================*/ 
 
#define NUM_PARAMS                   (3) 
#define NUM_CHANNELS_PARAM           (ssGetSFcnParam(S,0)) 
#define INPUT_RANGE_PARAM            (ssGetSFcnParam(S,1)) 
#define SAMPLE_TIME_PARAM        (ssGetSFcnParam(S,2))  
 
/*==================================================* 
 * Macros to access the S-function parameter values * 
 *==================================================*/ 
 
#define NUM_CHANNELS                 ((uint_T) mxGetPr(NUM_CHANNELS_PARAM)[0]) 
#define INPUT_RANGE(ch)              ((int_T)  mxGetPr(INPUT_RANGE_PARAM)[ch]) 
#define AD_SAMPLE_TIME         ((uint_T) mxGetPr(SAMPLE_TIME_PARAM)[0]) 
 
/*=======================================* 
 * Addresses for A/D Converter Registers * 
 *=======================================*/ 
 
#define ACR_ADDRESS         (0xE4) 
#define DCAS_ADDRESS         (0xE2) 
#define ADC_ADDRESS         (0xE4) 
 
/*====================* 
 * S-function methods * 
 *====================*/ 
 
/* Function: mdlInitializeSizes =============================================== 
 * Abstract: 
 * The sizes information is used by Simulink to determine the S-function 
 * block’s characteristics (number of inputs, outputs, states, etc.). 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    ssSetNumSFcnParams(S, NUM_PARAMS);  /* Number of expected parameters */ 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        /* Return if number of expected != number of actual parameters */ 
        return; 
    } 
 
    ssSetNumContStates(S, 0); 
    ssSetNumDiscStates(S, 0); 
 
    ssSetNumInputPorts(S, 0); 
 
    ssSetNumOutputPorts(S, 1); 
    ssSetOutputPortWidth(S, 0, NUM_CHANNELS); 
 
    ssSetNumSampleTimes(S, 1); 
    ssSetNumRWork(S, 0); 
    ssSetNumIWork(S, 0); 
    ssSetNumPWork(S, 0); 
    ssSetNumModes(S, 0); 
    ssSetNumNonsampledZCs(S, 0); 
 
    ssSetOptions(S, 0); 
} 
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/* Function: mdlInitializeSampleTimes ========================================= 
 * Abstract: 
 * This function is used to specify the sample time(s) for your 
 * S-function. You must register the same number of sample times as 
 * specified in ssSetNumSampleTimes. 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, AD_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
 
/* Function: mdlOutputs ======================================================= 
 * Abstract: 
 * In this function, you compute the outputs of your S-function 
 * block. Generally outputs are placed in the output vector, ssGetY(S). 
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
    real_T *y = ssGetOutputPortRealSignal(S,0); 
    uint_T  i,j; 
    int_T   raw; 
    
    for (i = 0; i < NUM_CHANNELS; i++) {          
  
    switch(INPUT_RANGE(i)) {                      /* Aquire and Convert Data */ 
        case 1:                                     /* 0-5V Range */ 
            outp(ACR_ADDRESS,0x40+i);                /* Trigger Conversion */   
            while((inp(DCAS_ADDRESS)&0x04)== 0) {  /* Wait Until Completed */ 
            }  
            raw = inpw(ADC_ADDRESS);    /* Input 12 bit Value & Scale */  
            y[i] = raw*0.001220703; 
            break; 
        case 2:                                  /* 0-10V Range */ 
            outp(ACR_ADDRESS,0x50+i);                
            while((inp(DCAS_ADDRESS)&0x04)== 0) { 
            }  
            raw = inpw(ADC_ADDRESS);  
            y[i] = raw*0.002441406; 
     break;   
        case 3: 
            outp(ACR_ADDRESS,0x48+i);            /* +-5V Range */                
            while((inp(DCAS_ADDRESS)&0x04)== 0) { 
            }  
            raw = inpw(ADC_ADDRESS);  
     if (raw > 2047) {                     /* Convert Two’s Complement */ 
                raw = (raw-65536); 
                y[i] = 0.002441406*raw;  
            } 
            else  { 
                y[i] = 0.002441406*raw;  
            } 
            break;         
        case 4:              /* +-10V Range */  
            outp(ACR_ADDRESS,0x58+i);                
            while((inp(DCAS_ADDRESS)&0x04)== 0) { 
            }  
            raw = inpw(ADC_ADDRESS);  
     if (raw > 2047) {                       /* Convert Two’s Complement */ 
                raw = (raw-65536); 
                y[i] = 0.004882813*raw;  
            } 
            else  { 
                y[i] = 0.004882813*raw; 
            }  
            break;   
    } 
    }  
} 
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/*=============================* 
 * Required S-function trailer * 
 *=============================*/ 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include “simulink.c”      /* MEX-file interface mechanism */ 
#else 
#include “cg_sfun.h”       /* Code generation registration function */ 
#endif 
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/*  
 *  vsbcenc.c:        Digital Input/Output Device Driver for 16 Channels on  
 *   VersaLogic VSBC-6 Board 
 *                    py 7-8-99 
 *   sc 3-4-00 revised 
 *   Based on sfuntmpl.c: C template for a level 2 S-function. 
 */ 
 
#define S_FUNCTION_LEVEL 2 
#define S_FUNCTION_NAME  vsbcenc 
#include  <stdlib.h>   
#include “simstruc.h” 
 
/*=========================================================================* 
 * Number of S-function Parameters and macros to access from the SimStruct * 
 *=========================================================================*/ 
 
#define NUM_PARAMS                  (2) 
#define NUM_CHANNELS_PARAM           (ssGetSFcnParam(S,0)) 
#define SAMPLE_TIME_PARAM      (ssGetSFcnParam(S,1))  
 
/*==================================================* 
 * Macros to access the S-function parameter values * 
 *==================================================*/ 
 
#define NUM_CHANNELS                ((uint_T) mxGetPr(NUM_CHANNELS_PARAM)[0]) 
#define AD_SAMPLE_TIME       ((uint_T) mxGetPr(SAMPLE_TIME_PARAM)[0]) 
 
/*=======================================* 
 * Addresses for A/D Converter Registers * 
 *=======================================*/ 
 
#define DCAS_ADDRESS                 (0xE2) 
#define DIOLO_ADDRESS                (0xE6) 
#define DIOHI_ADDRESS                (0xE7) 
 
 
/*====================* 
 * S-function methods * 
 *====================*/ 
 
/* Function: mdlInitializeSizes =============================================== 
 * Abstract: 
 * The sizes information is used by Simulink to determine the S-function 
 * block’s characteristics (number of inputs, outputs, states, etc.). 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    ssSetNumSFcnParams(S, NUM_PARAMS);  /* Number of expected parameters */ 
    if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) { 
        /* Return if number of expected != number of actual parameters */ 
        return; 
    } 
 
    ssSetNumContStates(S, 0); 
    ssSetNumDiscStates(S, 0); 
 
    ssSetNumInputPorts(S, 0); 
 
    ssSetNumOutputPorts(S, 1); 
    ssSetOutputPortWidth(S, 0, NUM_CHANNELS); 
 
    ssSetNumSampleTimes(S, 1); 
    ssSetNumRWork(S, 0); 
    ssSetNumIWork(S, NUM_CHANNELS); 
    ssSetNumPWork(S, 0); 
    ssSetNumModes(S, 0); 
    ssSetNumNonsampledZCs(S, 0); 
 
    ssSetOptions(S, 0); 
} 
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/* Function: mdlInitializeSampleTimes ========================================= 
 * Abstract: 
 * This function is used to specify the sample time(s) for your 
 * S-function. You must register the same number of sample times as 
 * specified in ssSetNumSampleTimes. 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, AD_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
 
#define MDL_INITIALIZE_CONDITIONS   /* Change to #undef to remove function */ 
#if defined(MDL_INITIALIZE_CONDITIONS) 
  /* Function: mdlInitializeConditions ======================================== 
   * Abstract: 
   * In this function, you should initialize the continuous and discrete 
   * states for your S-function block.  The initial states are placed 
   * in the state vector, ssGetContStates(S) or ssGetRealDiscStates(S). 
   * You can also perform any other initialization activities that your 
   * S-function may require. Note, this routine will be called at the 
   * start of simulation and if it is present in an enabled subsystem 
   * configured to reset states, it will be call when the enabled subsystem 
   * restarts execution to reset the states. 
   */ 
  static void mdlInitializeConditions(SimStruct *S) 
  { 
 int_T k; 
 for (k = 0; k < NUM_CHANNELS; k++) 
 {  
   ssSetIWorkValue(S,k,0); 
   } 
  } 
#endif /* MDL_INITIALIZE_CONDITIONS */ 
 
 
/* Function: mdlOutputs ======================================================= 
 * Abstract: 
 * In this function, you compute the outputs of your S-function 
 * block. Generally outputs are placed in the output vector, ssGetY(S). 
 */ 
static void mdlOutputs(SimStruct *S, int_T tid) 
{ 
    real_T *Speed = ssGetOutputPortRealSignal(S,0); 
    int_T i; 
 
    outp(DCAS_ADDRESS,0x02);         // initialize D0-D7 as input, D8-D15 as output 
  
    for (i = 0; i < NUM_CHANNELS; i++)  
    {          
      int_T   Counts, NewCount, j; 
 
      outp(DIOHI_ADDRESS,0x01);        // set enable high and delay for PIC 
 for (j = 0; j < 10000; j++) 
 { 
 } 
 
    NewCount = inp(DIOLO_ADDRESS);    // update current count for Encoder I 
 
     outp(DIOHI_ADDRESS,0x00);          // set enable low and delay for PIC 
 for (j = 0; j < 10000; j++) 
 { 
 } 
  
      if (ssGetIWorkValue(S,i) > NewCount)  // if counter has rolled over 
     { 
   Counts = (256 – ssGetIWorkValue(S,i)) + NewCount; 
      } 
    else Counts = NewCount – ssGetIWorkValue(S,i); 
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 if ((Counts > 255) | (Counts < -255)) // eliminate large values 
 { 
  Counts = 0; 
 } 
 
 Speed[i] = Counts;   // speed in number of geartooth counts 
           per sample time 
 ssSetIWorkValue(S,i,NewCount);  // update last count 
  
    } 
} 
 
/*=============================* 
 * Required S-function trailer * 
 *=============================*/ 
 
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include “simulink.c”      /* MEX-file interface mechanism */ 
#else 
#include “cg_sfun.h”       /* Code generation registration function */ 
#endif 
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Appendix N:  PIC code 
 
; radio.txt py 8/30/99 
 
; This program intercepts the PWM radio signals from the 
; receiver.  It uses the timer function to measure the  
; length of the high pulse for each of the three signals. 
 
 list P=PIC16F84 
#include "p16F84.inc" 
 
 __config(_CP_OFF & _WDT_OFF & _PWRTE_ON & _HS_OSC) 
 
; Define variables. 
; Registers keep timer value for length of high pulse. 
Throttle  equ 0x10 
Steering equ 0x11 
Shutdown equ 0x12 
; Registers keep track of enable signal from computer. 
Estate  equ 0x13 
Ecount  equ 0x14 
 
 ; Select Bank 1. 
 bsf STATUS, RP0 
 
 ; Initialize A0-A2 as inputs (radio signals). 
 ; Initialize A4 as input (data transfer enable signal). 
 movlw 0x1F 
 movwf TRISA 
 
 ; Initialize B0-B7 as outputs (parallel data transfer). 
 movlw 0x00 
 movwf TRISB 
 
 ; Set up the timer.  Prescaler rate is 32. 
 bcf 0x81, T0CS 
 bcf 0x81, PSA 
 bsf 0x81, PS2 
 bcf   0x81, PS1 
 bcf 0x81, PS0 
 
 ;select Bank 0. 
 bcf  STATUS, RP0 
 
 
 ; Clear all registers. 
 clrf Throttle 
 clrf Steering 
 clrf Shutdown 
 clrf Estate 
 clrf Ecount 
 
 ; Clear Port B. 
 movlw 0 
 movwf PORTB 
 
 
Main: 
 ; Check enable. 
 call Enable 
 
 ; Wait for signal A to go high. 
 btfss PORTA, 0 
 goto Main 
 
 ; Clear timer register. 
 clrf 0x01 
 
SignalA: 
 ; Check enable. 
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 call Enable 
 
 ; Check signal A. 
 btfsc PORTA, 0 
 goto SignalA 
 call TimeA 
 
 ; Clear timer register. 
 clrf 0x01 
 
SignalB: 
 ; Check enable. 
 call Enable 
 
 ; Check signal B. 
 btfsc PORTA, 1 
 goto SignalB 
 call TimeB 
 
 ; Clear timer register. 
 clrf 0x01 
 
SignalC: 
 ; Check enable. 
 call Enable 
 
 ; Check signal C. 
 btfsc PORTA, 2 
 goto SignalC 
 call TimeC 
 
 goto Main 
 
 
TimeA: 
 ; Record timer value for signal A. 
 movf 0x01, 0 
 movwf Throttle 
 return 
  
TimeB: 
 ; Record timer value for signal B. 
 movf 0x01, 0 
 movwf Steering 
 return 
 
TimeC: 
 ; Record timer value for signal C. 
 movf 0x01, 0 
 movwf Shutdown 
 return 
 
Enable: 
 ; Check enable. 
 btfss PORTA, 4 
 ; Call counter increment function if signal is low. 
 call EnableLo 
 btfsc PORTA, 4 
 ; Call data transmit function if signal is high. 
 call EnableHi  
 return 
 
EnableLo: 
 ; Increment counter if enable has transitioned to low since last check. 
 btfsc Estate, 0 
 incf Ecount  
 ; Reset counter if counter has reached 3. 
 btfsc Ecount, 1 
 call Overflow 
 ; Set state register to 0. 
 bcf Estate, 0 
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 return 
 
Overflow: 
 btfsc Ecount, 0 
 clrf Ecount 
 return 
 
EnableHi: 
 ; Check value of enable counter and send data from corresponding register. 
 btfss Ecount, 1 
 call  AorB 
 btfsc Ecount, 1 
 call SendC 
 ; Set state register to 1. 
 bsf Estate, 0 
 return 
  
AorB: 
 btfss Ecount, 0 
 call SendA 
 btfsc Ecount, 0 
 call SendB 
 return 
 
SendA: 
 movf Throttle, 0 
 movwf PORTB 
 return  
 
SendB: 
 movf Steering, 0 
 movwf PORTB 
 return 
 
SendC: 
 movf Shutdown, 0 
 movwf PORTB 
 return  
 
end 
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; encoder.txt py 8/30/99 
 
; This program multiplexes the square wave outputs from up to  
; four encoder-type wheel speed sensors.  It keeps count of 
; the square pulses for each sensor signal. 
 
 list P=PIC16F84 
#include "p16F84.inc" 
 
 __config (_CP_OFF & _WDT_OFF & _PWRTE_ON & _HS_OSC) 
 
; Define variables. 
; Registers keep current count of each encoder signal. 
CounterA equ 0x10 
CounterB equ 0x11 
CounterC equ 0x12 
CounterD equ 0x13 
; Register keeps track of which encoder data has been sent. 
CounterE equ 0x14 
; Registers indicate whether the signals are high or low. 
StateA  equ 0x15 
StateB  equ 0x16 
StateC  equ 0x17 
StateD  equ 0x18 
StateE  equ 0x19 
 
 ; Select Bank 1. 
 bsf STATUS, RP0 
 
 ; Initialize A0-A3 as inputs (encoder signals). 
 ; Initialize A4 as input (data transfer enable signal). 
 movlw 0x1F 
 movwf TRISA 
 
 ; Initialize B0-B7 as outputs (parallel data transfer). 
 movlw 0x00 
 movwf TRISB 
 
 ; Select Bank 0. 
 bcf STATUS, RP0 
 
Start: 
 ; Clear all registers. 
 clrf CounterA 
 clrf CounterB 
 clrf CounterC 
 clrf CounterD 
 clrf CounterE 
 clrf StateA 
 clrf StateB 
 clrf StateC 
 clrf StateD 
 clrf StateE 
 
 ; Clear Port B. 
 movlw 0 
 movwf PORTB 
 
 ; Wait for enable to go high. 
 btfss PORTA, 4 
 goto Start 
 
Main: 
; Check each encoder signal. 
; Set state register to 0 if signal is low. 
; Call counter increment function if signal is high. 
 
 ; Check encoder A. 
 btfss PORTA, 0 
 bcf StateA, 0 
 btfsc PORTA, 0 
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 call EncoderA 
 
 ; Check encoder B. 
 btfss PORTA, 1 
 bcf StateB, 0 
 btfsc PORTA, 1 
 call EncoderB 
 
 ; Check encoder C. 
 btfss PORTA, 2 
 bcf StateC, 0 
 btfsc PORTA, 2 
 call EncoderC 
 
 ; Check encoder D. 
 btfss PORTA, 3 
 bcf StateD, 0 
 btfsc PORTA, 3 
 call EncoderD 
 
 ; Check enable. 
 btfss PORTA, 4 
 ; Call counter increment function if signal is low. 
 call EnableLo 
 btfsc PORTA, 4 
 ; Call data transmit function if signal is high. 
 call EnableHi  
 
 goto Main 
 
EnableLo: 
 ; Increment enable counter if enable signal has transitioned to low since last 
check. 
 btfsc StateE, 0 
 incf CounterE  
 ; Reset counter if counter has reached 4. 
 btfsc CounterE, 2 
 clrf CounterE 
 ; Set state register to 0. 
 bcf StateE, 0 
 return 
 
EnableHi: 
 ; check value of enable counter and send data from corresponding register 
 btfss CounterE, 1 
 call  AorB 
 btfsc CounterE, 1 
 call CorD 
 ; Set state register to 1. 
 bsf StateE, 0 
 return 
 
 
AorB: 
 btfss CounterE, 0 
 call SendA 
 btfsc CounterE, 0 
 call SendB 
 return 
 
CorD: 
 btfss CounterE, 0 
 call SendC 
 btfsc CounterE, 0 
 call  SendD 
 return 
 
SendA: 
 movf CounterA, 0 
 movwf PORTB 
 return  
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SendB: 
 movf CounterB, 0 
 movwf PORTB 
 return 
 
SendC: 
 movf CounterC, 0 
 movwf PORTB 
 return  
 
SendD: 
 movf CounterD, 0 
 movwf PORTB 
 return  
 
EncoderA: 
 ; Increment A counter if encoder A signal has transitioned to high since last 
check. 
 btfss StateA, 0 
 incf CounterA 
 ; Set state register to 1. 
 bsf StateA, 0 
 return 
 
EncoderB: 
 ; Increment B counter if encoder B signal has transitioned to high since last 
check. 
 btfss StateB, 0 
 incf CounterB   
 bsf StateB, 0 
 return 
 
EncoderC: 
 ; Increment C counter if encoder C signal has transitioned to high since last 
check. 
 btfss StateC, 0 
 incf CounterC   
 bsf StateC, 0 
 return 
 
EncoderD: 
 ; Increment D counter if encoder D signal has transitioned to high since last 
check. 
 btfss StateD, 0 
 incf CounterD   
 bsf StateD, 0 
 return 
 
end    
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Appendix O:  List of suppliers 
 
Suppliers of mechanical hardware 
 
New Era Models (www.neweramodels.com) 

Partially assembled one quarter-scale RC car with necessary hardware including 
Futaba servo motors and radio controller/receiver system 

 
Zenoah (www.zenoah.com) 

One cylinder two stroke gasoline engine 
 

San Antonio Hobby Shop (San Antonio Shopping Center, Mountain View) 
In-line fuel filter, plastic antenna holder, 7.2V RC car battery 

 
Home Depot 

Aluminum side skirts, exhaust pipe 
 
Orchard Supply Hardware (2555 Charleston Road, Mountain View) 

Chain saw spark plug, miscellaneous hardware 
 
Palo Alto Hardware 

Miscellaneous hardware 
 
 
Suppliers of electrical hardware 
 
Jameco (1355 Shoreway Road, Belmont) 

30 W DC-DC converter, 12V rechargeable lead acid battery, .100” IDC DIP flat 
cable plugs, wire wrap IC sockets 

 
Digikey (www.digikey.com) 

.062” white Molex connectors, 0.100” black Molex locking connectors, white 
Molex “toy car” battery connector, SOIC to DIP adapter (for accelerometer 
mounting), electronic supplies 

 
 Halted Specialties Company (3500 Ryder Street, Santa Clara) 

Miscellaneous connectors, PC boards, electronic supplies 
 
Radio Shack 

SPDT switches, electronic supplies 
 
 
Suppliers of computer hardware and sensors 
 
Versalogic Corporation (www.versalogic.com) 

VSBC-6 single board computer and accessories 
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Microchip (www.microchip.com) 
 16F84 PIC microcontrollers, PICSTART Plus PIC programmer 
 
Analog Devices (www.analogdevices.com) 

ADXL202 dual axis accelerometer 
 
Systron Donner (www.systron.com) 

AQRS automotive angular rate sensor 
 
Newark Electronics (www.newark.com) 

Honeywell hall effect gear tooth sensor for wheel speed measurement 
 
Motion Industries, Inc. (160 Constitution Drive, Menlo Park) 

Steel spur gear (12 diametral pitch, 30 teeth, 14.5 degree pressure angle) for 
wheel speed sensor 

 


