Analysis of Air Spring

Douglas J Bourne

Constraining the linear motor assembly during a worst case scenario involving power failure during the exhaust stroke has been a serious consideration. In such an event, the motor assembly would be traveling at up to $5\frac{m}{s}$. Assuming a mass of 10kg, we obtain:

Kinetic Energy =
$$\frac{1}{2}mv^2$$

= $125J$

To absorb this energy we are considering a vented air spring. This spring would start to act 5mm before the piston contacted the head, and bring the piston to a stop .1mm from the end of the spring to allow for modeling errors. We assume atmospheric pressure at 5mm. The air spring has a length L and a projected area of A.

$$P * V = 505 * A$$

$$P = \frac{505 * A}{A * L}$$

$$P = \frac{505}{L}$$

Solving the energy equation for A:

Force =
$$(P - P_0) * A$$

Energy = $\int_{.0001}^{.005} (P - P_0) * A \, dL$
 $A = .0795 \, m$

This would require a 16cm radius air spring, which is not feasible with our space constraint.