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Outline

m Challenges/Opportunities for control in HCCI
o Cyclic coupling
o Lack of combustion trigger

= Simulation modeling of residual affected HCCI
o Review of approach: Basic model and ignition criteria
o Added capabillities: Transients, mode transitions & gasoline

= Control model and controller design
» Review of approach
o Added capabilities: direct control of IMEP & phasing
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Challenges/Opportunities in HCCI with VVA

= Variable valve actuation
e Valves are only input: IVO/EVC/IVC
o Fuel is another input: fixed equivalence ratio in intake

m Cycle-to-cycle coupling through exhaust gas

= No direct initiator of combustion

o Dependent on kinetics: reactant concentrations,
temperature & amount of compression

o Transients & mode transitions complicate this

= Modeling and control work must account for:
INng and ignition via kinetics
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Our Control Engineering Approach

“Everything should be made as simple as possible, but not simpler.
-Albert Einstein

“All models are wrong. Some are useful.”
-George E. P. Box

= Objective: Simple physical models and controllers that
capture behavior most relevant for control
e Cyclic coupling
o Combustion phasing
o In-cylinder pressure evolution
o Work output

= Sophistication in proving stability, boundedness, control
design, etc.
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Multi-cycle HCCI Simulation Model

= 1stlaw analysis of cylinder and exhaust manifold
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Multi-cycle HCCI Simulation Model

= 1stlaw analysis of cylinder and exhaust manifold
m Steady state 1D compressible flow relations
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Multi-cycle HCCI Simulation Model

= 1stlaw analysis of cylinder and exhaust manifold
m Steady state 1D compressible flow relations

%"

e Ref: Chang et al. 2004 @ ——

o Exhaust manifold

= Heat transfer %‘\(
/

o In-cylinder (modified Woschni)
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Multi-cycle HCCI Simulation Model

1st law analysis of cylinder and exhaust manifold
Steady state 1D compressible flow relations

Heat transfer §4\‘/ ‘%9/ .)<

o In-cylinder (modified Woschni)

e Ref: Chang et al. 2004 @ ——
o Exhaust manifold

Combustion model Q

o Wiebe function
o What do we use as a trigger for HCCI combustion?
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Integrated Arrhenius Rate Equation

= Simple model for start of combustion
o Integrated Arrhenius rate

threshold = (s/t"b Aexp(E, / RT)|C,H,J’[0,]dg

o Constant threshold
e a, b and E_ from published experiments

= Contributions from temperature, compression &
concentration captured

= Different from knock integral:
e In knock integrala=b =0
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Integrated Arrhenius Rate
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Simulation Model: Steady State Propane
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...and pressure, phasing & IMEP at all points is captured
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Simulation Model: Steady State Propane
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= Note: can vary RMF without much change in phasing
o Integrated Arrhenius model captures this

e Can find (IVO/EVC) valve manifold that maintains nearly
constant phasing while varying RMF
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Simulation Model: Can It be extended?

m Steady state behavior with propane captured

= What about:
o Gasoline
e Transients
e Sl-to-HCCI mode transitions

= Can modeling approach capture these cases?
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Simulation Model: Gasoline

EGR=0.533, ? =1

EGR=0.523, ? =1.1

m Simple model captures

40 Sim behavior most relevant
E
30 il for control
20 o In-cylinder pressure
evolution
10 . .
o Combustion phasing
~ " ‘ ‘ ‘ ; 0 1 I I |
O e0 330 380 430 480 280 330 380 430 480 o Work output
EGR=0.686, ? =1 EGR=0.656, ? =1.1
ad - o  |m Thisis not a big
surprise:
30 30 B
o Ignition delay models
20 29 of complex fuels
10 10 have same form as
7 ~ - Integrated Arrhenius
280 330 380 430 480 280 330 380 430 480 (He et al. 2003)
Stanford University Cycle-to-cycle control of HCCI Engines using Variable Valve Actuation -14 Dynamic Design Lab.



Simulation Model: Transients
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Simulation Model: Transients

Experiment
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Mode Transition

= What will happen during a SI-to-HCCI mode
transition?

m S| exhaust temperature are typically substantially
higher than HCCI

= We would expect to see a more pronounced effect
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S| to HCCI Mode Transition Simulation

= Mode transition
captured
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Results from Simulation modeling

= Aspects most relevant for control captured with
simple simulation model:
o Cyclic coupling
o Combustion phasing
o Work output & in-cylinder pressure evolution

= Approach can handle:
o Steady-state behavior w/ propane and gasoline
o Transients
o Sl-to-HCCI mode transitions
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A Simple Control Strategy

= Intuition gained from simulation work: can use VVA
to independently:

o Vary inducted composition (via IVO and EVC)
o Vary effective compression ratio (via IVC)

= Control model:
e Input: a=N_/N, (composition)
e Input: IVC (amount of compression)
o Output: peak pressure or load
o Output: combustion phasing

m Step through process to determine model
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Control Model

exhaust

related to
reactan(—l state 5 (k-1

State 1(k) State 2 (k State 3 (k State 4 (k)

v J v

Induction Compression Combustion Expansion Exhaust
= Assumptions:

¢ Induction: atmospheric pressure

o Full mixing

e Isentropic compression & expansion
HCCI is fast: constant volume combustion
In-cylinder heat transfer (in cylinder): % of LHV
Exhaust manifold Heat transfer: convective
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Control Model

= The control model takes the form:
B.=f@.a,.,P.1.009..,1VC,IVC,,)

threshold = (‘S/C”b Aexp(E, / RT)[C,H,]*[0,]’dq

P- peak pressure

g — crank angle at combustion
a — composition (VVA controllable input)

IVC (VVA controllable input)
All constants derived from physical values

» Control model still captures
o Cyclic coupling
o Ignition via kinetics
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Peak Pressure Control w/ Constant Phasing

» Fix IVC

= pick IVO/EVC manifold to vary a, with:
e ~ constant phasing (a “static” approach to treating phasing)

B.=f@wa.; B.1,0:.9.., IVC,IVC,,)

—» B =f(@.a,.,,B.,)

threshold = q‘gl";mb Aexp(E, / RT)[C,H,]’[0,]’ dq

o Can then linearize model and synthesis controller
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Experimental Control of Peak Pressure
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Direct IMEP Control

= A very simple model for IMEP can be formulated

PVide (V2 - V8 )+ PV (VLS - vE9)
1-9

IMEP =5

= With IVC and phasing fixed, IMEP is linearly
dependent on peak pressure

o So: IMEP control is extension of peak pressure control
o Can use similar control strategy
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Experimental IMEP Control

| » Rapid tracking &
dispersion reduction

1 o Manageable valve
movements

1 « We can control IMEP,
while keeping phasing
roughly constant

200 300 400 500 600
time
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Comments on Experiments

m Simple physics-based controller works well
o Mean tracking & dispersion reduction:
e peak pressure
o IMEP
o Phasing fairly constant
o Implementation is straightforward

= What about independent control of IMEP &
phasing?
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Peak Pressure and Phasing Control

= Recall: control model
B.=f@,.a., B 1,99 IVC,IVC )

threshold = 3" Aexp(E, / RT)[C,H,]*[0,]"do

= Add a control input: IVC (effective comp. ratio)

= Two different approaches
o Separate linear controllers for peak pressure and phasing
e Solve two nonlinear equations simultaneously
e Dynamic Feedback Linearization
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Decoupled Peak Pressure and Phase Control

= Maintain cycle-to-cycle peak pressure controller, vary
phase more slowly

measured
P

cycle-to-cycle
peak pressure
controller

aactual

Closed- loop Single
controlled v actual Cylinder
"slow" VVA system l Engine

»-| combustion
1 AOPmeasured
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timing
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dynamically de-coupled
peak pressure and
combustion timing
control
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Experiments with Load and Phase

= Approach works
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Experiments with Decoupled Control

= Approach works

pk press. AOP

= Simultaneous step
changes

e Phasing and peak
pressure
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Dynamic Feedback Linearization

e 1 m Simulation results
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Conclusion

m Key behaviors captured in both simulation and control:
e Cyclic coupling through the exhaust gas temperature

o Ignition via chemical kinetics:
e reactant concentration
e temperature
e effective compression ratio

= Simulation modeling extended to handle:
o Gasoline

o HCCI transients
o SI-to-HCCI mode transitions

= Physics-based control of:

o Peak pressure
o IMEP
o Peak pressure and phasing
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Future Work

m Extension of techniques to independent control of
IMEP and phasing on cycle-to-cycle basis

= Control of SI-to-HCCI transitions

» Investigate use of variable lift strategies for control
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