Physics-based Control of Residual-Effected HCCI Engines

Gregory M. Shaver
J. Christian Gerdes Matthew Roelle
Nikhil Ravi

Mechanical Engineering Department
Stanford University
Outline

- Challenges/Opportunities for control in HCCI
 - Cyclic coupling
 - Lack of combustion trigger

- Simulation modeling of residual affected HCCI
 - Review of approach: Basic model and ignition criteria
 - Added capabilities: Transients, mode transitions & gasoline

- Control model and controller design
 - Review of approach
 - Added capabilities: direct control of IMEP & phasing
Challenges/Opportunities in HCCI with VVA

- Variable valve actuation
 - Valves are only input: IVO/EVC/IVC
 - Fuel is another input: fixed equivalence ratio in intake

- Cycle-to-cycle coupling through exhaust gas

- No direct initiator of combustion
 - Dependent on kinetics: reactant concentrations, temperature & amount of compression
 - Transients & mode transitions complicate this

- Modeling and control work must account for:
 - Coupling and ignition via kinetics
Our Control Engineering Approach

“Everything should be made as simple as possible, but not simpler.”
-Albert Einstein

“All models are wrong. Some are useful.”
-George E. P. Box

■ Objective: Simple physical models and controllers that capture behavior most relevant for control
 ● Cyclic coupling
 ● Combustion phasing
 ● In-cylinder pressure evolution
 ● Work output

■ Sophistication in proving stability, boundedness, control design, etc.
1st law analysis of cylinder and exhaust manifold
Multi-cycle HCCI Simulation Model

- 1st law analysis of cylinder and exhaust manifold
- Steady state 1D compressible flow relations
Multi-cycle HCCI Simulation Model

- 1st law analysis of cylinder and exhaust manifold
- Steady state 1D compressible flow relations

- Heat transfer
 - In-cylinder (modified Woschni)
 - Ref: Chang et al. 2004
 - Exhaust manifold
Multi-cycle HCCI Simulation Model

- 1st law analysis of cylinder and exhaust manifold
- Steady state 1D compressible flow relations

- Heat transfer
 - In-cylinder (modified Woschni)
 - Ref: Chang et al. 2004
 - Exhaust manifold

- Combustion model
 - Wiebe function
 - What do we use as a trigger for HCCI combustion?
Integrated Arrhenius Rate Equation

- Simple model for start of combustion
 - Integrated Arrhenius rate
 \[\text{threshold} = \int_{IVC}^{\theta_{comb}} A \exp\left(\frac{E_a}{RT}\right) [C_3H_8]^a [O_2]^b \, d\theta \]
 - Constant threshold
 - \(a, b\) and \(E_a\) from published experiments

- Contributions from temperature, compression & concentration captured

- Different from knock integral:
 - In knock integral \(a = b = 0\)
Integrated Arrhenius Rate

- Set threshold at one operating point…
Set threshold at one operating point…
…and pressure, phasing & IMEP at all points is captured
Simulation Model: Steady State Propane

Note: can vary RMF without much change in phasing
- Integrated Arrhenius model captures this
- Can find (IVO/EVC) valve manifold that maintains nearly constant phasing while varying RMF
Steady state behavior with propane captured

What about:
- Gasoline
- Transients
- SI-to-HCCI mode transitions

Can modeling approach capture these cases?
Simulation Model: Gasoline

- Simple model captures behavior most relevant for control
 - In-cylinder pressure evolution
 - Combustion phasing
 - Work output

- This is not a big surprise:
 - Ignition delay models of complex fuels have same form as integrated Arrhenius (He et al. 2003)
Simulation Model: Transients

- **1st operating point has higher steady state temperature than 2nd**

- The elevated exhaust temperature advances combustion process during transition

- As exhaust temperature decreases, behavior reaches new steady state
Simulation Model: Transients

- Simple model captures the coupling and ignition behavior during transition.
- As ΔT_{exht} increases, effect increases.
Mode Transition

- What will happen during a SI-to-HCCI mode transition?

- SI exhaust temperature are typically substantially higher than HCCI

- We would expect to see a more pronounced effect
SI to HCCI Mode Transition Simulation

- Mode transition captured
- Coupling same: natural extension of HCCI coupling
Results from Simulation modeling

- Aspects most relevant for control captured with simple simulation model:
 - Cyclic coupling
 - Combustion phasing
 - Work output & in-cylinder pressure evolution

- Approach can handle:
 - Steady-state behavior w/ propane and gasoline
 - Transients
 - SI-to-HCCI mode transitions
A Simple Control Strategy

- Intuition gained from simulation work: can use VVA to independently:
 - Vary inducted composition (via IVO and EVC)
 - Vary effective compression ratio (via IVC)

- Control model:
 - Input: $\alpha = N_p/N_r$ (composition)
 - Input: IVC (amount of compression)
 - Output: peak pressure or load
 - Output: combustion phasing

- Step through process to determine model
Assumptions:
- Induction: atmospheric pressure
- Full mixing
- Isentropic compression & expansion
- HCCI is fast: constant volume combustion
- In-cylinder heat transfer (in cylinder): % of LHV
- Exhaust manifold Heat transfer: convective
The control model takes the form:

\[P_k = f(\alpha_k, \alpha_{k-1}, P_{k-1}, \theta_k, \theta_{k-1}, IVC_k, IVC_{k-1}) \]

\[\text{threshold} = \int_{IVC}^{\theta_{comb}} A \exp\left(\frac{E_a}{RT}\right) [C_3H_8]^a [O_2]^b \, d\theta \]

- P - peak pressure
- \(\theta \) – crank angle at combustion
- \(\alpha \) – composition (VVA controllable input)
- IVC (VVA controllable input)
- All constants derived from physical values

Control model still captures
- Cyclic coupling
- Ignition via kinetics
Peak Pressure Control w/ Constant Phasing

- Fix IVC
- pick IVO/EVC manifold to vary α, with:
 - \sim constant phasing (a “static” approach to treating phasing)

\[
P_k = f(\alpha_k, \alpha_{k-1}, P_{k-1}, \theta_k, \theta_{k-1}, IVC_k, IVC_{k-1})
\]

\[
\text{threshold} = \int_{IVC}^{\theta_{comb}} A \exp\left(\frac{E_a}{RT}\right)[C_3H_8]^a[O_2]^b \, d\theta
\]

\[
P_k = f(\alpha_k, \alpha_{k-1}, P_{k-1})
\]

- Can then linearize model and synthesis controller
Experimental Control of Peak Pressure

- Accurate control of peak pressure
 - Mean tracking
 - Dispersion reduction

- Little change in phase
 - Fast transient
 - Residual temperature
 - Slow transient
 - Wall temperatures

- What about direct control of IMEP?
Direct IMEP Control

- A very simple model for IMEP can be formulated:

\[
IMEP = \frac{P_{atm} V_{IVC}^\gamma \left(V_{TDC}^{1-\gamma} - V_{IVC}^{1-\gamma} \right) + P_{pk} V_{pk}^\gamma \left(V_{EVO}^{1-\gamma} - V_{pk}^{1-\gamma} \right)}{1-\gamma}
\]

- With IVC and phasing fixed, IMEP is linearly dependent on peak pressure:
 - So: IMEP control is extension of peak pressure control
 - Can use similar control strategy
Experimental IMEP Control

- Rapid tracking & dispersion reduction
- Manageable valve movements
- We can control IMEP, while keeping phasing roughly constant
Comments on Experiments

- Simple physics-based controller works well
 - Mean tracking & dispersion reduction:
 - peak pressure
 - IMEP
 - Phasing fairly constant
 - Implementation is straightforward

- What about independent control of IMEP & phasing?
Peak Pressure and Phasing Control

- Recall: control model
 \[P_k = f(\alpha_k, \alpha_{k-1}, P_{k-1}, \theta_k, \theta_{k-1}, IVC_k, IVC_{k-1}) \]
 \[\text{threshold} = \int_{IVC}^{\theta_{comb}} A \exp\left(\frac{E_a}{RT} \right) \left[C_3 H_8 \right]^a \left[O_2 \right]^b d\theta \]

- Add a control input: IVC (effective comp. ratio)

- Two different approaches
 - Separate linear controllers for peak pressure and phasing
 - Solve two nonlinear equations simultaneously
 - Dynamic Feedback Linearization
Decoupled Peak Pressure and Phase Control

- Maintain cycle-to-cycle peak pressure controller, vary phase more slowly.
Experiments with Load and Phase

- Approach works
- Step change
 - Phasing
- Change in dispersion
 - Variation higher at later phase
Experiments with Decoupled Control

- Approach works
- Simultaneous step changes
 - Phasing and peak pressure
- 4 degree change in phase
 - ~ 30 degree change in IVC
Dynamic Feedback Linearization

- Simulation results
 - Fast cycle-to-cycle response

- Drawback
 - Computation time

- Future work:
 - Finding appropriate balance between complexity & capability
Conclusion

- Key behaviors captured in both simulation and control:
 - Cyclic coupling through the exhaust gas temperature
 - Ignition via chemical kinetics:
 - reactant concentration
 - temperature
 - effective compression ratio

- Simulation modeling extended to handle:
 - Gasoline
 - HCCI transients
 - SI-to-HCCI mode transitions

- Physics-based control of:
 - Peak pressure
 - IMEP
 - Peak pressure and phasing
Future Work

- Extension of techniques to independent control of IMEP and phasing on cycle-to-cycle basis

- Control of SI-to-HCCI transitions

- Investigate use of variable lift strategies for control