Physics-based Control of Residual-Effected HCCI Engines

Gregory M. Shaver J. Christian Gerdes Matthew Roelle Nikhil Ravi

Mechanical Engineering Department Stanford University

Outline

- Challenges/Opportunities for control in HCCI
 - Cyclic coupling
 - Lack of combustion trigger

Simulation modeling of residual affected HCCI

- Review of approach: Basic model and ignition criteria
- Added capabilities: Transients, mode transitions & gasoline

Control model and controller design

- Review of approach
- Added capabilities: direct control of IMEP & phasing

Challenges/Opportunities in HCCI with VVA

- Variable valve actuation
 - Valves are only input: IVO/EVC/IVC
 - Fuel is another input: fixed equivalence ratio in intake
- Cycle-to-cycle coupling through exhaust gas
- No direct initiator of combustion
 - Dependent on kinetics: reactant concentrations, temperature & amount of compression
 - Transients & mode transitions complicate this
- Modeling and control work must account for:
 Coupling and ignition via kinetics

Our Control Engineering Approach

"Everything should be made as simple as possible, but not simpler." -Albert Einstein

"All models are wrong. Some are useful." -George E. P. Box

- Objective: Simple physical models and controllers that capture behavior most relevant for control
 - Cyclic coupling
 - Combustion phasing
 - In-cylinder pressure evolution
 - Work output
- Sophistication in proving stability, boundedness, control design, etc.

1st law analysis of cylinder and exhaust manifold

Stanford University

1st law analysis of cylinder and exhaust manifold
 Steady state 1D compressible flow relations

Stanford University

- 1st law analysis of cylinder and exhaust manifold
 Steady state 1D compressible flow relations
 - Heat transferIn-cylinder (modified Woschni)
 - Ref: Chang et al. 2004
 - Exhaust manifold

- 1st law analysis of cylinder and exhaust manifold
 Steady state 1D compressible flow relations
 - Heat transferIn-cylinder (modified Woschni)
 - Ref: Chang et al. 2004
 - Exhaust manifold
- Combustion model
 - Wiebe function
 - What do we use as a trigger for HCCI combustion?

Integrated Arrhenius Rate Equation

Simple model for start of combustion

Integrated Arrhenius rate

threshold =
$$\int_{IVC}^{\boldsymbol{q}_{comb}} A \exp(E_a / RT) [C_3 H_8]^a [O_2]^b d\boldsymbol{q}$$

Constant threshold

- a, b and E_a from published experiments
- Contributions from temperature, compression & concentration captured
- Different from knock integral:
 - In knock integral a = b = 0

Integrated Arrhenius Rate

Simulation Model: Steady State Propane

Simulation Model: Steady State Propane

Simulation Model: Can it be extended? Steady state behavior with propane captured What about: Gasoline Transients SI-to-HCCI mode transitions Can modeling approach capture these cases?

Stanford University

Simulation Model: Gasoline

Simple model captures behavior most relevant for control

- In-cylinder pressure evolution
- Combustion phasing

Work output

This is not a big surprise:

 Ignition delay models of complex fuels have same form as integrated Arrhenius (He et al. 2003)

Simulation Model: Transients

1st operating point has higher steady state temperature than 2nd

The elevated exhaust temperature advances combustion process during transition

 As exhaust temperature decreases, behavior reaches new steady state

Simulation Model: Transients

Mode Transition

- What will happen during a SI-to-HCCI mode transition?
- SI exhaust temperature are typically substantially higher than HCCI
- We would expect to see a more pronounced effect

Stanford University

Results from Simulation modeling

- Aspects most relevant for control captured with simple simulation model:
 - Cyclic coupling
 - Combustion phasing
 - Work output & in-cylinder pressure evolution
- Approach can handle:
 - Steady-state behavior w/ propane and gasoline
 - Transients
 - SI-to-HCCI mode transitions

A Simple Control Strategy

- Intuition gained from simulation work: can use VVA to independently:
 - Vary inducted composition (via IVO and EVC)
 - Vary effective compression ratio (via IVC)

Control model:

- Input: $\alpha = N_p / N_r$ (composition)
- Input: IVC (amount of compression)
- Output: peak pressure or load
- Output: combustion phasing

Step through process to determine model

- Assumptions:
 - Induction: atmospheric pressure
 - Full mixing
 - Isentropic compression & expansion
 - HCCI is fast: constant volume combustion
 - In-cylinder heat transfer (in cylinder): % of LHV
 - Exhaust manifold Heat transfer: convective

Control Model

The control model takes the form:

$$P_{k} = f(\boldsymbol{a}_{k}, \boldsymbol{a}_{k-1}, P_{k-1}, \boldsymbol{q}_{k}, \boldsymbol{q}_{k-1}, IVC_{k}, IVC_{k-1})$$

threshold =
$$\int_{IVC}^{\boldsymbol{q}_{comb}} A \exp(E_{a} / RT) [C_{3}H_{8}]^{a} [O_{2}]^{b} d\boldsymbol{q}$$

- P- peak pressure
- θ crank angle at combustion
- α composition
- IVC

- (VVA controllable input)(VVA controllable input)
- All constants derived from physical values
- Control model still captures
 - Cyclic coupling
 - Ignition via kinetics

Peak Pressure Control w/ Constant Phasing **Fix IVC** pick IVO/EVC manifold to vary α , with: constant phasing (a "static" approach to treating phasing) $|P_{k} = f(\boldsymbol{a}_{k}, \boldsymbol{a}_{k-1}, P_{k-1}, \boldsymbol{q}_{k}, \boldsymbol{q}_{k-1}, IVC_{k}, IVC_{k-1})|$ $|P_k = f(\boldsymbol{a}_k, \boldsymbol{a}_{k-1}, P_{k-1})$ threshold = $\int_{IVC}^{\boldsymbol{q}_{comb}} A \exp(E_a / RT) [C_3 H_8]^a [O_2]^b d\boldsymbol{q}$ Can then linearize model and synthesis controller

Experimental Control of Peak Pressure

Stanford University

Direct IMEP Control

A very simple model for IMEP can be formulated

$$IMEP = \frac{P_{atm}V_{IVC}^{g} \left(V_{TDC}^{1-g} - V_{IVC}^{1-g}\right) + P_{pk}V_{pk}^{g} \left(V_{EVO}^{1-g} - V_{pk}^{1-g}\right)}{1-g}$$

- With IVC and phasing fixed, IMEP is linearly dependent on peak pressure
 - So: IMEP control is extension of peak pressure control
 - Can use similar control strategy

Experimental IMEP Control

Stanford University

Comments on Experiments

Simple physics-based controller works well

- Mean tracking & dispersion reduction:
 - peak pressure
 - IMEP
- Phasing fairly constant
- Implementation is straightforward

What about independent control of IMEP & phasing?

Peak Pressure and Phasing Control

Recall: control model

$$P_{k} = f(\boldsymbol{a}_{k}, \boldsymbol{a}_{k-1}, P_{k-1}, \boldsymbol{q}_{k}, \boldsymbol{q}_{k-1}, IVC_{k}, IVC_{k-1})$$

threshold = $\int_{IVC}^{\boldsymbol{q}_{comb}} A \exp(E_{a} / RT) [C_{3}H_{8}]^{a} [O_{2}]^{b} d\boldsymbol{q}$

Add a control input: IVC (effective comp. ratio)

Two different approaches

- Separate linear controllers for peak pressure and phasing
- Solve two nonlinear equations simultaneously
 - Dynamic Feedback Linearization

Decoupled Peak Pressure and Phase Control

 Maintain cycle-to-cycle peak pressure controller, vary phase more slowly

Experiments with Load and Phase

- Approach works
- Step change
 - Phasing
- Change in dispersion
 - Variation higher at later phase

Experiments with Decoupled Control

- Approach works
- Simultaneous step changes
 - Phasing and peak pressure
- 4 degree change in phase
 - ~ 30 degree change in IVC

Dynamic Feedback Linearization

Stanford University

Cycle-to-cycle control of HCCI Engines using Variable Valve Actuation - 32

2 Dynamic Design Lab.

Conclusion

Key behaviors captured in both simulation and control:

- Cyclic coupling through the exhaust gas temperature
- Ignition via chemical kinetics:
 - reactant concentration
 - temperature
 - effective compression ratio
- Simulation modeling extended to handle:
 - Gasoline
 - HCCI transients
 - SI-to-HCCI mode transitions
- Physics-based control of:
 - Peak pressure
 - IMEP
 - Peak pressure and phasing

