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Abstract

Future automotive safety functions, such as lanekeeping or
collision avoidance, link the vehicle dynamically to its en-
vironment. As a result, vehicle motion is determined by
a combination of the mechanical system dynamics and the
virtual link to the roadway or obstacles. The need for careful
design of both the mechanical and control system elements
is particularly apparent for these driver assistance systems
since control is intended to complement, not cancel, the ve-
hicle dynamics. This paper presents stability requirements
for vehicles with a driver assistance system that keeps the
vehicle in the lane through the application of virtual forces.
When the application point is at the center of gravity, the re-
sults indicate a critical speed for understeering vehicles and
instability for oversteering vehicles. Shifting the application
point of the virtual force to the neutral steer point, however,
stabilizes the oversteering case under a critical speed.

1 Introduction

Today, many vehicles are being equipped with driver as-
sistance systems such as ABS and stability control. These
systems are designed to aid the driver by preventing any un-
stable or unpredictable vehicle behavior. Although they pro-
vide stable dynamics, these control systems do not prevent
the vehicle from avoiding hazardous environmental obsta-
cles. Gerdes and Rossetter [1] proposed a method for incor-
porating such links to the environment within the paradigm
of artificial potential fields. In this work, the fields represent
virtual forces from the environment. This is closely related
to previous work in robotics (e.g. Khatib [5] and Hogan
[4]) with the objective being a nominally safe driving envi-
ronment as opposed to end-effector placement or trajectory
generation. Similar ideas have been proposed by Reichardt
and Schick [6] for autonomous vehicles and by Hennessey
et al [3] for the design of a ‘virtual bumper’.

Since the driver still has high level control in such a system,

the combined dynamics resulting from physical and virtual
forces are of primary importance. These dynamics not only
determine the stability from the driver’s perspective but also
specify the response to environmental obstacles. Within the
potential field framework, the hazard associated with ob-
jects in the environment can be interpreted as an artificial
potential function and a controller designed to ensure that
an artificial energy (consisting of the actual kinetic energy
and the artificial potential) is bounded [1]. Hence, the haz-
ard experienced by the vehicle can also be bounded. For the
case of lanekeeping, the conservatism in this bound can be
directly traced to the handling dynamics of the vehicle. An
understeering car will yaw out of the field as it returns to
the center of the lane and hence not transfer much of the ki-
netic energy into potential energy (or hazard). Conversely,
an oversteering car will yaw into the field and transfer all of
the vehicle’s kinetic energy into artificial potential energy.
From the driver’s perspective, the oversteering vehicle with
virtual forces for lanekeeping is unstable.

This paper presents a stability analysis of the system to
demonstrate the handling implications of virtual forces for
lanekeeping. The results clearly illustrate the instability as-
sociated with an oversteering vehicle and the presence of
a critical speed for an understeering vehicle. Shifting the
application point of the virtual forces to the neutral steer-
ing point of the vehicle, however, restores stability to the
oversteering car below a new critical speed. These re-
sults provide insight into the proper way of applying virtual
forces to control high speed vehicles and the connections
between such systems and the vehicle handling characteris-
tics. While discussed in terms of potential fields, the same
concepts apply to other two-dimensionsal collision avoid-
ance systems such as the ‘virtual bumper’ approach used by
Hennessey et al [3] when the driver remains in the loop.

2 Vehicle Dynamics

The vehicle model used in the analysis is a simple three de-
gree of freedom yaw plane representation with differential



braking shown in Figure 1.

mU̇x = Fxr +Fx f cosδ�Fy f sinδ+mrUy (1)

mU̇y = Fyr +Fx f sinδ+Fy f cosδ�mrUx (2)

Izṙ = aFx f sinδ+aFy f cosδ�bFyr (3)

+
d
2
(∆Fxr +∆Fx f cosδ)

where

Fx f = Fxr f +Fxl f (4)

Fxr = Fxrr +Fxlr (5)

∆Fx f = Fxr f �Fxl f (6)

∆Fxr = Fxrr�Fxlr (7)

The parameters are illustrated in Figure 1.
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Figure 1: Vehicle Model

Assuming small angles and equal slip angles on the left and
right wheels,

α f =
Uy + ra

Ux
�δ (8)

αr =
Uy� rb

Ux
(9)

Using a linear tire model and assuming the same cornering
stiffness, Cy, on both tires, the lateral forces are given as

Fy f = �Cyα f (10)

Fyr = �Cyαr (11)

Substituting the expressions for the lateral forces into Equa-
tions 1 through 3 and ignoring higher orders of δ yields,

mU̇x = mrUy +Fxr +Fx f +Cy(
Uy + ra

Ux
)δ (12)

mU̇y = �Cy(
Uy� rb

Ux
)�Cy(

Uy + ra
Ux

)�mrUx (13)

+ Cyδ+Fx f δ

Izṙ = aFx f δ�aCy(
Uy + ra

Ux
)+bCy(

Uy� rb

Ux
) (14)

+ aCyδ+
d
2
(∆Fxr +∆Fx f )

Assuming a vehicle that has throttle, brake, and steer-by-
wire capabilities, the equations can be rewritten as

Dq̈ = f (q̇)+g(q̇;uc) (15)

where q̇ = [Ux Uy r]T and the control vector uc =
[δFxr f Fxl f Fxrr Fxlr]

T . D is the positive definite mass matrix,
f (q̇) contains the terms that are not influenced by the con-
trol vector and g(q̇;uc) has the remaining controlled terms.
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3 Control Law

The potential function used in the control law is described
in global coordinates w = [s e ψ]T where s is the distance
along the roadway, e is the distance of the vehicle’s center
of gravity from the lane center and ψ is the heading angle.
Transformation between the global and body fixed coordi-
nates is achieved with

∂ẇ
∂q̇

=
∂w
∂q

=

2
4 cosψ �sinψ 0

sinψ cosψ 0
0 0 1

3
5 (16)

Assuming that the vehicle is not being influenced by the
driver and, assuming no damping is added to the system,
the control is simply the conservative forces derived from
the potential function:

g(q̇;uc) =�
�

∂V
∂w

∂w
∂q

�T

(17)

where V(w) is the potential function representing hazard in
the global reference frame. With this control law, the vehi-
cle dynamics can be rewritten, replacing the control input
vector with the potential field:

Dq̈ = f (q̇)�
�

∂V
∂w

∂w
∂q

�T

(18)

This set of non-linear differential equations is the focus of
the analysis. The behavior in question is the stability of the
vehicle with respect to a desired trajectory consisting of a
constant longitudinal velocity at the minimum of the poten-
tial function (in other words, staying in the center of the lane
on a straight section of road). Since the interesting behavior
is in the global coordinates, it makes sense to transform the
equations of motion into global states and then linearize the
system about the desired trajectory.



4 Transformation and Linearization of the Dynamics

The basic idea is to transform the equations of motion into
the global reference frame and then rewrite the three second
order differential equations as six first order equations that
are functions of [e ė s ṡ ψ ψ̇]. Jacobian linearization can
then be performed about a straight trajectory where ṡ equals
a constant S and all other states are zero. This trajectory will
correspond to the minimum of a potential function. In the
absence of a potential function, this analysis returns well-
known stability results for vehicle handling, as should be
expected. The system will then be analyzed using a second
order potential function that is only dependent on the lateral
position.

V (e) = Ke2 (19)

where K is a positive constant. This simple quadratic po-
tential function gives a linear conservative force which does
not disappear in the system linearization.

A technique will then be discussed to transform the appli-
cation of the potential field to the neutral steer point. This
will achieve the desired behavior in an oversteering vehicle.

4.1 Linearization Without Potential Fields
The linearization of the system about a constant longitudinal
velocity gives,

δẋ = Aδx (20)

where δx = [δe δė δψ δψ̇]T and

A =

2
6664

0 1 0 0

0 �2Cy
mS

2Cy
m

(�a+b)Cy
mS

0 0 0 1

0 (�a+b)Cy
IzS

(a�b)Cy
Iz

�(a2+b2)Cy
IzS

3
7775 (21)

Taking the determinant of (λI�A) yields the characteristic
equation of the system.

λ2 �λ2 +λa1 +a2
�
= 0 (22)

where,

a1 =
2CyIz +(a2 +b2)Cym

IzmS

a2 =
Cy

2(a+b)2 +(b�a)CymS2

IzmS2

From the above equation it can be determined that there are
two eigenvalues at 0 due to the two positional states. For
an understeering car, where b > a, both coefficients a 1 and
a2 are positive which, for a second order system, is suffi-
cient to prove stability. In an oversteering case (a > b), the
coefficient a2 will be negative when

S >

s
Cy(a+b)2

(a�b)m
(23)

This is the well known critical speed for an oversteering
vehicle (Gillespie [2]). As expected, the transformation to

global coordinates did not change the basic stability prop-
erties of the vehicle. Once the vehicle is linked to the envi-
ronment through the potential field, however, the eigenval-
ues corresponding to handling and positional states are no
longer independent.

4.2 Linearization With a Potential Function
Adding a potential function of the form described in Equa-
tion 19 yields a linear system which has one extra term ap-
pearing in the second row of the matrix given in Equation
21. Since the potential field is oriented in the lateral direc-
tion it only enters the second differential equation.

A =

2
6664

0 1 0 0
�2K

m
�2Cy

mS
2Cy
m

(�a+b)Cy
mS

0 0 0 1

0 (�a+b)Cy
IzS
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Iz
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IzS

3
7775 (24)

The characteristic equation of this matrix is

λ4 +λ3b1 +λ2b2 +λb3+b4 = 0 (25)

where

b1 =
2CyIz +(a2 +b2)Cym

IzmS

b2 =
Cy

2(a+b)2+(b�a)CymS2 +2KIzS2

IzmS2

b3 =
2KCy(a2 +b2)

IzmS

b4 =
2KCy(b�a)

Izm

Regardless of the vehicle’s speed, the last term, b4, is al-
ways negative when oversteering parameters are used. Sign
changes in the characteristic equation coefficients fail the
necessary conditions for stability. The addition of the po-
tential field thus alters the oversteering vehicle dynamics to
produce instability by lowering the critical speed to zero.

If the vehicle is understeering, all the coefficients are posi-
tive. Although this is a necessary condition for stability, it
is not sufficient. Using the Routh array, it can be shown that
the system is stable up to a critical velocity.

Scr =
1p
2

�
N
D

�1=2

(26)

where N and D are

N = �(a+b)2(a2 +b2)C2
y (2Iz +(a2 +b2)m)

D = Iz(2Iz((a�b)Cy+(a2 +b2)K)

+ (a�b)(a2+b2)Cym)

The fact that even understeering cars have conditions for
stability is extremely important in the design of these types
of controllers for high speed applications. For the param-
eters used in the simulation (Table 1), the critical speed is



47:47m=s, which is fairly large. Adding damping to the con-
trol vector will help stabilize the system when it is past the
critical speed predicted here.

The unstable behavior in the oversteering vehicle occurs be-
cause the potential field is applying a virtual control force at
the center of gravity, using a combination of steering and
differential braking inputs. In order to rectify this problem,
the virtual force can be shifted to a point other than the cen-
ter of gravity. Moving the application point of the potential
field to the neutral steer point gives the desired response for
an oversteering car and does not violate the proof of nomi-
nal safety given by Gerdes and Rossetter [1].

4.3 Shifting the Potential Field Application
In order to shift the application of the potential field, there
needs to be a transformation from the new application
point in global coordinates to the body fixed coordinates.
The new application point on the vehicle will be given as
w̃ = [s̃ ẽ ψ̃]T . Introducing a transformation matrix from the
global velocity coordinates of the center of gravity to the
global velocity coordinate of the new point as

∂w̃
∂w

=

2
4 1 0 �xnssinψ

0 1 xnscosψ
0 0 1

3
5 (27)

we can transform the potential field from the new applica-
tion point to body fixed velocity coordinates so that

V̇ (w̃) =

�
∂V
∂w̃

∂w̃
∂w

∂w
∂q

�
q̇ (28)

Assuming that the potential function is differentiable, the
system still exhibits nominally safe behavior. If the poten-
tial function V (w̃) is interpreted as a level of hazard applied
to system states, then in the absence of driver input, the sys-
tem hazard is bounded by:

Vmax =
1
2

q̇(0)T Dq̇(0)+V(w̃(0))

where w̃(0) and q̇(0) are the values at the initial time t = 0.

Proof Defining an effective energy by

E =
1
2

q̇T Dq̇+V(w̃)

the rate of change of energy is:

Ė = q̇T Dq̈+
∂V
∂w̃

∂w̃
∂w

∂w
∂q

q̇

= q̇T [ f (q̇)+g(q̇;uc)]+
∂V
∂w̃

∂w̃
∂w

∂w
∂q

q̇

= q̇T

"
f (q̇)�

�
∂V
∂w̃

∂w̃
∂w

∂w
∂q

�T
#
+

∂V
∂w̃

∂w̃
∂w

∂w
∂q

q̇

= q̇T f (q̇)

� 0

In Gerdes and Rossetter [1], it is shown that q̇T f (q̇) is al-
ways negative. Since the energy cannot increase,

Vmax � E0 =
1
2

q̇(0)T Dq̇(0)+V(w̃(0))

bounds the hazard in the system.

4.4 Linear Analysis of the Modified System
The neutral steer point of a vehicle is the point on the center-
line where an external force will create no steady state yaw
velocity. This concept is often used to discuss sidewind sen-
sitivity of a vehicle and has a natural interpretation when
considering virtual forces and stability. With the potential
field acting at the neutral steer point, xns, where

xns =
a�b

2
(29)

the equations of motion have extra components appearing in
the moment equation. The transformation and linearization
can be performed exactly as before. Now the matrix given
in Equation 24 contains an extra component in the last row
due to the moment created by the potential field:

A =

2
6664

0 1 0 0
�2K

m
�2Cy

mS
2Cy
m

(�a+b)Cy
mS

0 0 0 1
�(a�b)K

Iz
(�a+b)Cy

IzS
(a�b)Cy

Iz
�(a2+b2)Cy

IzS

3
7775 (30)

The characteristic equation is

λ4 +λ3c1 +λ2c2 +λc3 + c4 = 0 (31)

where

c1 =
2CyIz +(a2 +b2)Cym

IzmS

c2 =
Cy

2(a+b)2+(b�a)CymS2 +2KIzS2

IzmS2

c3 =
KCy(a+b)2

IzmS
c4 = 0

The only term in this system which can possibly go negative
for an oversteering vehicle is c2. From looking at the Routh
array, the system actually has a critical speed that occurs
before c2 becomes negative.

Scr =

�
N
D

�1=2

(32)

where

N = �(a+b)2C2
y (2Iz +(a2 +b2)m)

D = 4I2
z K +(a�b)Iz(�2Cy +(a�b)K)m

� (a�b)(a2+b2)Cym2

Using the parameters in Table 1, the critical speed of the
vehicle is 31:94m=s. Below this speed, the system is stable.



Understeer Oversteer
m (kg) 1670 1670

Iz (N=m2) 2100 2100
Cy (N/rad) 61595 61595

K 5000 5000
a (m) 1.3 1.7
b (m) 1.7 1.3

Table 1: Vehicle Parameters

As the application of the force is shifted forward on the
oversteering vehicle, the positive eigenvalues that appeared
when the force was applied at the center of gravity are
shifted to the left on the real axis until they go negative.
It can be shown that the oversteering vehicle in the potential
field will not be stabilized until the application of the force
is at the neutral steer point of the vehicle.

5 Simulation

In order to see the responses of the vehicle, simulations were
run with the quadratic potential function used in the analysis
(Equation 19). Three different conditions are shown in Fig-
ure 2. The first two show the responses for an understeering
and oversteering vehicle if the potential field is applied at
the center of gravity. The third case shows the oversteering
vehicle with the potential field applied at the neutral steer
point. The initial conditions for the simulation are e = 0:5m
and S = 20m=s, representing a normal highway speed and
an initial offset from the lane center. All other states are
zero. The parameters used in the simulation are in Table 1.

The results shown in Figure 2 show the exact behavior pre-
dicted by the linear analysis on the system. When the poten-
tial field is applied at the center of gravity, the understeering
vehicle is stable and tends to oscillate about the minimum
of the potential function. Use of an oversteering vehicle
exhibits drastically different results. The force from the po-
tential field initially pushes the car towards the minimum
of the function. The change in the vehicle dynamics, how-
ever, causes a rotation into the potential function. The large
amount of energy that exists from the longitudinal speed
is then transfered into the lateral direction and the vehicle
moves further into the field. Assuming a potential function
that exists for all e, the oversteering vehicle would turn into
the potential field until the longitudinal axis of the vehicle
is parallel to the gradient of the potential field. In essence,
the oversteering vehicle will transfer all of its initial kinetic
energy into artificial potential energy.

Transferring the application of the potential field to the neu-
tral steer point creates a stable, well behaved response. In
fact, the response of the oversteering vehicle is now more
desirable than the understeering case. This results because
the application of the potential field at the neutral steer point
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Figure 2: Vehicle Model

creates a zero yaw velocity at steady state. Reducing the
amount of rotation that occurs lowers the energy transfer
from the vehicle into the potential field.

6 Concluding Remarks

The analysis in this paper illustrates the instabilities that can
occur when virtual control forces are applied to a vehicle.
The proposed solution - altering the point of application of
the potential field or virtual force - has many uses in this
type of control. Not only does it stabilize the oversteering
vehicle, it also alters the transient behavior of any vehicle
within the potential field. Future work will attempt to bound
the energy transfer in the system based on the application
point of the field. A possible next step is to dynamically
alter the application point of the potential field based on the
behavior of a vehicle with unknown parameters in order to
provide both lanekeeping and yaw control.
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