
ABSTRACT

Unlike most legged robotic systems built to date, even simple
animals have the ability to quickly and robustly traverse through
rough terrain and over large obstacles and gaps. Recent evidence
from insect physiology research indicates that arthropods
achieve this fast robust locomotion largely without relying on
sensory feedback or reflex response. Instead, locomotion is the
result of the interaction between a basic feedforward motor
pattern and the visco-elastic properties of the mechanical
system, termed “preflexes.” In this paper, we consider the
implications of this control hypothesis for the design of small
running robots for uncertain environments. We present working
prototypes that show how robust dynamic locomotion can be
achieved without the use of sensory feedback. We then discuss
modeling approaches for these kinds of systems and present
results from simulations of representative models.

1. INTRODUCTION

Legged locomotion has long been an attractive alternative to
wheels or tracks for mobile robots. Legged animals have the
ability to negotiate rough terrain and obstacles far more easily
than wheeled vehicles of similar size. However, current legged
robots enjoy neither the simplicity of wheels nor the versatility
of legged animals. 

A major difficulty in achieving legged locomotion is to
coordinate and control the legs to produce efficient and robust
movement of the body. This problem is exacerbated in
unstructured environments. One effort to reduce the complexity
has been to utilize statically stable locomotion, where the
robot’s dynamics are assumed negligible. For example, a
hexapedal walker may be controlled to maintain the center of

mass within a triangle of support formed by three legs. This
approach has demonstrated stable locomotion in environments
inaccessible to wheeled systems.

However, for legged systems to compete effectively with
wheels and tracks, they must become fast. Pioneering research
by Raibert (1986) and those who have followed his work (e. g.
Koditschek and Buehler, 1991; Schmiedeler and Waldron,
1999; Berkemeier, 1998) has demonstrated that fast locomotion
can be achieved in robots by attaining dynamic stability. This
dynamic stability implies motion that is stable over time, but
which may be statically unstable at any particular instant. These
investigations of dynamically stable hopping and trotting robots
have illustrated the importance of tuning the compliance of the

Figure 1.   Hexapedal robot constructed using Shape
Deposition Manufacturing, capable of robust locomotion
at speeds up to 2.5 body lengths per second without
utilizing sensory feedback.
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mechanical system itself, in conjunction with simple, but
appropriate, feedback control. 

Going a step further, we argue that, during fast dynamic
locomotion, reliance on sensory feedback (both external and
proprioceptive) can compromise the system’s robustness. This
is especially true as the size of the robot decreases and the
system time constants become shorter in comparison to
achievable servo rates.

In this paper, we propose systems that achieve robust
locomotion through the interaction between a feedforward
motor pattern and the properly tuned visco-elastic properties of
the mechanical system, properties which have been termed
“preflexes” (Brown and Loeb, 1997).

The following section reviews current biological and robotic
research that evinces the role of preflexes in locomotion. We
then show that such systems are feasible by presenting
hexapedal robots that operate without feedback control. These
robots, such as the one in Figure 1, can achieve speeds of 2.5
body lengths per second and quickly traverse large, hip-height
obstacles. We then consider modeling these types of systems
and show that they can result in dynamically stable motion, first
analytically for a one-dimensional case and then empirically
through simulation of a more complex two-dimensional system.
Finally, we discuss ongoing work to further understand the
implications of these assumptions.

2. FEEDFORWARD-PREFLEX INTERACTIONS

Biological research has found that running animals of
different sizes, with different numbers of legs and
morphologies, all produce similar patterns of ground reaction
forces (Blickhan and Full 1993). These ground reaction forces
are often thought of as being produced by a virtual spring-mass

Figure 2.   Suggested roles of feedforward motor
patterns, preflexes, and sensory feedback. Adapted from
Full and Koditschek (1999).
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system, or a "bouncing monopod.” Full and Koditschek (1999)
suggest that this simple behavior is in fact the target behavior of
redundant multi-legged systems that possess many degrees of
freedom. Indeed, the fast and dynamically-stable locomotion in
Raibert's and related robots have as their basis the simple model
of a spring-loaded inverted pendulum. Even Raibert's two and
four-legged systems operated by exploiting symmetry and by
coordinating, through control, the many degrees of freedom
available to behave as a single virtual leg. While this
revolutionary work showed that fast dynamically-stable
locomotion can be achieved through this simple model, the
issue of robustness has received less attention. Here we define
robustness as the rapid convergence to a desirable steady-state
behavior despite extreme, unexpected disturbances or changes
in terrain.

Although different animals utilize different strategies for
traversing rough terrain, we draw particular inspiration from the
robust performance of small arthropods. Full has shown that the
cockroach Blaberus discoidalis can scramble over a fractally-
distributed collection of obstacles up to three times its body
height (Full et al., 1998). They do this without flipping over or
even appreciably slowing down.

Moreover, it has been observed that during locomotion
through this rough terrain, the basic motor pattern sent to the
muscles did not notably change. There is no precise foot-
placement, no follow-the-leader gait. For small animals like the
cockroach, the effects of disturbances are immediate relative to
the stride period (Ting et al., 1994). Delays in the sensory
feedback loop used in reflexes can be compromising. Thus, it
appears the cockroach creates robust locomotion through a
basic feedforward pattern applied to its mechanical system,
relying on very little, if any, sensory feedback during a stride.

This extreme exclusion of sensory feedback in such uncertain
environments can only be possible through an appropriately
designed mechanical system on which the feedforward pattern
is applied. Without some kind of disturbance rejection,
perturbations would quickly drive the system astray. There is
evidence that self-stabilization comes from preflexes, the non-
linear, passive visco-elastic properties of the mechanical system
itself (Brown and Loeb, 1997; Meijer and Full, in press). The
mechanical nature of these preflexes makes their response
instantaneous, of zero order, allowing the system to rapidly
respond to disturbances. 

An example of these preflexes in robots is the compliant air-
spring in the leg of Raibert's robots. Compliance was shown to
be a necessary, simple, and efficient way to carry out the energy
exchanges between kinetic and potential energy present in
running or hopping. More recent work has shown that the
configuration of the mechanical system itself can determine
passive stable behavior (Kubow and Full, 1999). In addition,
ongoing research seeks to determine the role of passive
damping found in the joints and exoskeleton of insect legs



during locomotion (Xu et al., 2000). It is estimated that the
limbs of the cockroach are approximately critically damped
(Garcia and Full, unpublished). 

This interaction between feedforward patterns and preflexes
is believed to be an appropriate control scheme for creating
robust repetitive motion, such as locomotion (Kuo, 1998; Full
and Koditschek, 1999). The relative roles of feedforward,
sensory feedback and preflexes in organisms have been
hypothesized as illustrated in Figure 2. Slow movement can rely
on sensory feedback for active stabilization and precision,
where delays are tolerable. Fast repetitive movement must rely
on rapid-acting, passive self-stabilization.

The possibility of creating fast robust locomotion without
relying on sensory feedback has interesting implications for
legged-robot design. The simplicity of control resulting from
these types of systems is very attractive, as sensor noise and
delays are no longer concerns. 

The challenge now becomes the careful design of the
mechanical system, such that it possesses the appropriate self-
stabilizing properties that work in concert with the feedforward
pattern. This difficulty can be seen in the scarcity of dynamic
robots that exhibit robust performance comparable to that
observed in Blaberus discoidalis.  Extending the theoretical
monopedal robustness results to multi-legged robots remains an
active research problem. Most of the results in this area have
made restrictive assumptions regarding symmetry and leg
coupling.

Of course, the creation of robust dynamic robots for basic
locomotion will require more than just tuning the passive

Figure 3.   Hexapedal Prototypes. (a) Mini-Sprawl was
built with a compliant coupling between the pistons and
the servos. (b) Sprawlita, here shown traversing through
hip-height obstacles. (c) Table showing general
dimensions and performance of the prototypes

(a) (b)

M ini-Sp raw l S p raw li ta

M a ss .250 K g .270 K g

Dim e nsion s 12x 14x 12 cm 16x10x9 c m

Le g Le ngth 4.5 cm 4.5 cm

S tride  P e riod 350  ms 200 m s

M a x .  S p e e d 25 cm /s 39 cm/s

2 body/s 2.5 body/s

(c)

mechanical properties to respond to a feedforward pattern. Just
as important are the sprawled posture and multiple legs, for
instance, which play a significant role when negotiating rough
terrain. Here, leg design, kinematic arrangement and function
contribute to self-stabilization. Obviously, physical sturdiness
allows the cockroach to survive collisions due to extreme terrain
irregularities.

In the following section, we present prototypes we have built
which capitalize on all of these factors for robust locomotion.

3. HEXAPEDAL PROTOTYPES

The prototypes presented here are initial attempts at
combining several of the hypotheses mentioned above
concerning robust locomotion. While much work remains to
understand the relative roles of these design principles, the
surprisingly robust performance of these and other prototypes
(Saranli et al., 2000) helps validate and motivate this general
approach. Thus, our prototypes are presented here merely as
existence proofs that the combination of a feedforward pattern
with a properly tuned and designed mechanical system can lead
to the creation of fast robust robots.

Figure 3a and 3b show two of our prototype hexapedal robots.
The first, "Mini-Sprawl", was assembled by traditional means.
The second, "Sprawlita," was constructed using Shape
Deposition Manufacturing (SDM), an emerging layered-
manufacturing technology (Bailey et al, 1999; Cham et al, 1999;
Rajagopalan et al., 1999; Merz et al, 1994). As shown in Figure
4, SDM allowed us to embed the actuators, wiring and
connectors into the structure of the robot itself, increasing
sturdiness by avoiding the unreliability of traditional fasteners
and connectors. In addition, SDM permits the fabrication of
parts with spatially varying material properties. In this
prototype, the compliance properties of the leg were varied by

Figure 4.   Close-up of robot manufactured by SDM. Leg
design was based on cockroach kinematics and studies
of leg function, which indicate that legs act as thrusters
without relying on high hip torques. The robot was built
with thrusting pistons connected to rotary servos
through a compliant hip flexure.
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using a soft grade of polyurethane in specific locations.

Figure 3c shows the general dimensions of the prototypes as
well as approximate maximum speeds on a flat surface. The
scale of surface variations for which we've observed locomotion
without significant loss of speed is illustrated in Figure 3b.
These variations were as large as the lengths of the legs
themselves. The maximum speed obtained by Sprawlita was
approximately 0.39m/s, roughly equivalent to 2.5 body lengths
per second or 8 leg-lengths per second.

Instead of directly mimicking the kinematics of the
cockroach, the design of the prototypes is based on observations
of leg function in the sagittal plane of the cockroach. Leg design
is as shown in Figure 4, and consists of a pneumatic piston
attached to a servo through a compliant coupling. This
configuration is based on the observation that legs act as
thrusters during locomotion, as indicated by measurements of
cockroach ground reaction forces (Full et al., 1991). The legs
are placed such that the center of mass lies towards the back of
the robot. The nominal angles of the legs are determined by the
servos such that each leg performs a different function. As
observed in arthropods, front legs are angled forward to act as
decelerators and back legs are angled backwards to function as
accelerators (Full et al., 1991).

The feedforward pattern applied to this mechanical system is
simple. Two three-way valves are activated at a stride
frequency. Each valve controls air into the three pistons
corresponding to one tripod of support. The duty cycle of each
tripod, the percentage of the stride period in which air is
supplied to the pistons, determines the relative phase and the
amount of overlap between the two tripods. In the first
prototype, Mini-Sprawl, the servos are commanded to swing
back and forth during the each tripod’s activation period. Higher
compliance was designed into the hips of Sprawlita, resulting in
comparable speeds even without active servo movement. That
is, the leg's swinging motion can be solely due to the passive
compliance at the hip.

The role of compliance is emphasized by these prototypes.
An earlier version of Mini-Sprawl with non-compliant hip joints
was not able to move forward at all. In addition, changes in the
nominal angles of the hips, controlled by the position of the
servos, can cause significant changes in the speed and direction
of locomotion. For example, turning on flat terrain could be
effected in Mini-Sprawl by making the angles of the legs of one
side of the robot more extreme. This same behavior has been
hypothesized for the cockroach, where variations in leg
placement are believed to initiate rapid turning (Jindrich and
Full, 1999).

The ability of these prototypes to quickly traverse large
surface variations demonstrates that robust locomotion is
possible through a combination of feedforward/preflex control,
appropriate leg design and manufactured physical sturdiness.
However, we have yet to fully characterize the exact roles

played by each of these principles. Indeed, the performance
obtained from these prototypes is the result of experimental
design iterations in which parameters such as leg angles, stride
frequency, location of center of mass and duty cycle were varied
to maximize the robot's speed.

The following section presents a modeling approach to these
feedforward-controlled compliant systems. Through these
models, we hope to gain better understanding of the basic
mechanisms underlying the type of locomotion these systems
are evidently capable of.

4. MODELING FEEDFORWARD-PREFLEX SYSTEMS

Locomotion can be modeled as a sequence of modes and
transitions between modes. Each mode represents a different
configuration of the mechanical system, possibly under some
control law. For example, as each alternate leg or set of legs is
placed on the ground, the system transitions from one mode to
another. Modeling used in statically-stable walking, passive-
walking and dynamic hoppers research follows this general
approach (McGeer, 1990; Koditschek and Buehler, 1991). In
Raibert’s hoppers, for example, locomotion was described as
transitions between a flight phase, a compression phase, a
thrusting phase and a decompression phase (Raibert, 1986). 

Transitions between modes are generally determined solely
by events in the state of the system. For example, a passive
walker changes mode when the foot contacts the ground, and a
Raibert hopper initiates a thrusting mode when the extension
rate of the leg changes sign. However, for the systems
considered here, a different approach is taken.

In the systems considered here, we first assume that mode
transitions can be initiated by the feedforward pattern. For
example, leg activation in our prototypes is a predetermined
function of time as given by the frequency and duty cycle with
which the solenoid valves are powered. This given, we assume
that in steady-state locomotion, foot contact occurs after an
approximately fixed time delay after the valves are commanded.

Figure 5.   In the simplified systems considered here,
mode transitions occur at scheduled times, as given by
by the feedforward pattern. The condition for a periodic
orbit is that the state repeats itself after a complete cycle.
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We assume that any variations in these foot contact delays are
small compared to the stride period. By neglecting this
variability, we can assume that mode transitions can occur as a
known function of the feedforward pattern alone.

Furthermore, we restrict our analysis to locomotion in which
the posture of the robot is such that ground contact is
maintained at all times without a flight phase. This type of
running, termed “Groucho” running (McMahon, 1987), is
observed in most insects (Ting et al., 1994). Without a flight
phase, and neglecting variability in foot contact, mode
transitions are completely determined by the feedforward
pattern. Mode transitions can be considered “scheduled,” as
shown in Figure 5, and are not dependent on sensory feedback.
Terrain irregularities which alter this schedule in any way
simply result in disturbances at the initiation of the next mode.

The prototypes presented in the previous section represent
simplified abstractions of the actual cockroach that capture the
same basic locomotion capabilities. Despite their distilled
nature, even exact models of these prototypes are still too
complex to determine trends and draw conclusions about why
these locomoting systems work in general.

In order to capture the basic behavior of these “scheduled”
systems, we first start with a simple analytical 1 DOF model to
reveal some general properties. From this simple model, we
increase the complexity of the model until we arrive at an
appropriate model that captures the basic mechanisms required
for robust locomotion through feedforward. Simulations of this
model reveal basic design principles and trade-offs inherent in
these systems.

4.1. One Degree-of-Freedom Motion

As a starting point for the discussion of modeling approaches,
we first consider the simple example of a one-degree-of-

Figure 6.   The four different simple models considered:
a) 1 DOF hopper b) 2 DOF with compliant swinging leg c)
2DOF with compliant leg and foot spring d) 2 DOF with
two compliant swinging legs
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freedom mass-spring-damper system, as shown in Figure 6a.
Next, assume that the system transitions between n modes at
given times within a cycle period according to a predetermined
pattern. Each mode is defined by a different set of values for the
damping coefficient, spring constant and equilibrium point of
the spring. Note that a mode transition can occur which creates
an instantaneous compression or decompression of the spring.

Integration of these linear, time-invariant systems yields the
following trajectories for each of the modes:

(1)

i = 1, 2 ... n

where eAit is the state-transition matrix and is the 

equilibrium point of the mass-spring-damper system of mode i. 
The general conditions for a cycle are:

(2)

where ∆tn is the duration of mode n. Combining Eq.1 with Eq. 2 
produces:

(3)

Given the properties of the modes of the system and their
duration, we can solve the linear system above for the states at
the mode transitions xi(∆ti). These states at the transitions define
the periodic trajectory, or orbit, of the system. One way to view
this orbit is as the motion created by changing the equilibrium
point of the system at each mode.

The existence of this orbit does not depend on the stability of
each of the modes. That is, a periodic orbit may still exist,
despite the fact that all of the individual modes are unstable.

The robustness of this orbit may be studied by looking at the
response to a perturbation from the nominal orbit. It can be
shown that a perturbation  at the end of mode n will map

into a perturbation  at the next complete cycle as follows:

(4)

From discrete linear systems theory, a perturbation will
eventually decay if the eigenvalues of the product of the state-
transition matrices, M, have magnitudes less than unity. Thus,
the robustness of the periodic orbit to perturbations is given by
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the magnitude of these eigenvalues.

It can be shown that the largest eigenvalue of M is at most the
product of the largest eigenvalues of the individual state-
transition matrices. In summary, a periodic orbit may be
obtained through any combination of stable and unstable modes.
However, the robustness of this orbit to perturbations is
dependent on the aggregate effect of these modes.

Of course, this 1 DOF system is a very limited case on which
to draw conclusions about this class of systems. However, the
observations made above will guide our exploration of systems
with higher degrees of freedom.

4.2. Two Degrees-of-Freedom Motion

We now consider motion restricted to the sagittal plane,
treating the body as a point mass such that there are only two
degrees of freedom. Our goal is to arrive at a simple model
which operates under a feedforward pattern and captures the
same mechanism for locomotion as that observed in biology and
our prototypes.

An alternative 2 DOF system is the spring-loaded inverted
pendulum, shown in Figure 6b. This “hopper” model exhibits
the essential motion and ground reaction forces seen in many
locomoting systems when running over flat ground (Blickhan
and Full 1993). However, we believe this model does not
capture the important stabilizing role played by sprawled
posture in cockroaches. While locomotion orbits can be
achieved with this unstable model, robust operation is
completely dependent on feedback. Like the 1 DOF example
considered earlier, an orbit is possible using feedforward alone
even when transitioning between unstable modes, but at the cost
of extreme sensitivity to disturbances. 

More complex models which begin to capture the self-
stabilizing role of sprawled posture are shown in Figures 6c and

Figure 7.   Conceptualized trajectory of sprawled-posture
model. Model parameters can be chosen to modify the
trajectory within the duration of the mode.
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6d. In these models, there can exist a stable equilibrium point
within each mode, a property which we believe should be
exploited in robust locomotion. As we will show next, moving
this equilibrium point between modes according to a
feedforward motor pattern is a useful way to create robust
motion, similar to the 1 DOF example discussed earlier.

We choose to start with the model shown in Figure 6d
because the effects of varying parameters is more intuitive. In
the model, a set of legs placed on the ground is represented by
two damped, compliant legs. The role of the front leg is to
decelerate the body, while the role of the back leg is to create
forward thrust. Moreover, since we are only considering motion
in the sagittal plane, the alternate set of legs is identical to the
first. If we assume duty cycles of 50%, then there is only one
effective mode, which is reset at half the stride period.

Figure 7 shows the basic configuration of the system during
one half-period. At the beginning of the mode, each leg is reset
to a prescribed angle relative to the body. The location of the
mass at the moment of transition may be such that the leg is
precompressed when it is set down. The system will then have a
trajectory given by its initial conditions that will move forward
towards the equilibrium position of that mode. The mode is then
switched, or reset, and the cycle begins again, resulting in
forward locomotion.

Simulation of this system shows that, given appropriate
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Figure 8.   a) Simulation response of the system to
vertical perturbations. b) Simulation response with
increase in terrain height. Our measure of “robustness”
is an indication of how rapidly the system converges to
its original trajectory after such disturbances.



parameters, motion of the system converges to a given orbit, as
shown in Figure 8, despite perturbations and terrain changes.
Moreover, we can use the Floquet Technique (Sastry, 1999) to
estimate how rapidly it will recover from disturbances.
Perturbations to fixed points on the nominal orbit are
approximately mapped from one cycle to the next as follows:

(5)

(6)

Where f, termed the return-map of the system, is the function
which maps the state from one cycle to the next. In this case, the
non-linearity of the equations of motion does not permit
analytical integration. Instead, this function is found by
numerical integration and the derivative above is found by
computing the sensitivity matrix about the fixed point on the
nominal trajectory. At mode transitions, the legs are placed
relative to the body, making x-position perturbation analysis
inappropriate. Hence, these perturbations are not considered in
the computation of the matrix M. Similar to the 1DOF case, the
magnitude of the eigenvalues of this matrix M indicate the local
robustness of the orbit.

This measure of robustness and the diagram in Figure 7
suggest a set of general design principles with which to choose
the many parameters in this system. Although the relationships
between all of these parameters are highly complex, various
parameters will influence certain aspects of the resulting
motion. The stiffnesses and nominal lengths of the legs and the
angles between them can be chosen to modify the equilibrium
point. The initial angle of the legs with respect to the body can
be selected to locate the initial configuration with respect to the
equilibrium point. The amount of damping in the legs influences
the rate at which the body moves towards the equilibrium point.
Finally, the duration of the mode affects the length of the
trajectory before the next mode transition.

As an example, parameter studies through simulation indicate
that there is a general trade-off between locomotion speed and
the local robustness of the nominal orbit. Figure 9 shows the
robustness of a given orbit as a function of the damping in the
model legs. Robustness is approximated as the inverse of the
magnitude of the largest eigenvalue of M, as given by Eq. 6.

In general, higher speeds are obtained by expanding the
trajectory of the body within a mode. This can be achieved by a
combination of decreasing the damping in the legs, extending
the mode duration time, placing the equilibrium point towards
the front and placing the initial condition towards the back.
However, this places the trajectory closer to the limits of the
statically-stable regime, given by the footholds, thereby
compromising robustness. Interestingly, the center of mass of
cockroaches during fast locomotion also approaches the limits

xn k 1+, f xn k,( )=

xn k 1+, x∂
∂f

xn k,

xn k, Mxn k,= =

of the triangle of statically-stable support (Ting et al., 1994).

The simplified models presented above are used only to
increase our understanding of the type of system that we believe
approximates the behavior of our prototypes. As shown, these
systems are characterized by: 1) motion towards an equilibrium
configuration given by the passive properties of the mechanical
system and 2) a feedforward pattern that increments the location
of this equilibrium configuration to obtain forward locomotion.

5. CONCLUSIONS AND FUTURE WORK

While the relative roles of feedforward and feedback during
fast locomotion through unstructured terrain are yet to be fully
determined, the possibility that much of the motion and
robustness can be achieved without sensory feedback is indeed
attractive. Especially at small scales, reliance on sensors
becomes cumbersome as smaller mechanisms become harder to
instrument and the time constants of the physical system
decrease in comparison to achievable servo rates.

The prototypes presented here indicate that without sensory
feedback, but with a properly designed mechanical system,
legged robots can achieve dynamic performance in rough
terrain that begins to compare with that seen in nature. The
modeling approach proposed is only a starting point for our
understanding of the mechanisms that make these systems work
so well. Future work will focus on further analysis of these
models and on determining the ways in which these simplified
models can map to the more complex systems of the robot
prototypes.

As shown, the function of sensory feedback appears to be
minimized during fast repetitive motion. However, we are
investigating the ways in which feedback can be used at a
higher level to alter the feedforward motor pattern or other
characteristics of the system in order to adapt to changing

Figure 9.   Effects of increasing damping in the legs of
the model in Figure 6d. Velocity can be increased, but at
the expense of robustness to perturbations
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conditions.

Finally, we advocate that biomimetic behavior must be
combined with biomimetic physical structures if these robots
are to become truly robust. To this end, we continue to integrate
biological findings from insect physiology with the nascent
capabilities of Shape Deposition Manufacturing to develop
robot structures with properly tuned mechanical properties and
integrated sensing and actuation.
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