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ABSTRACT

As our understanding of the principles underlying animal 
locomotion improves, we are inspired to apply them to robot 
design. This has traditionally been achieved through controls or 
discrete mechanical devices; however, new manufacturing 
methods, such as Shape Deposition Manufacturing (SDM), offer 
us the opportunity to develop mechanisms containing intrinsic 
mechanical properties tailored for function. To properly utilize 
SDM, we must develop a bridge between biology and design. 
As a first step, we have conducted relaxation and dynamic tests 
on the ablated metathoracic limb of the Blaberus discoidalis 
cockroach and derived measures of stiffness and damping. We 
then tested an SDM-compatible polymer with similar 
viscoelastic properties. Comparison and understanding of the 
mapping between these two materials enables us to design and 
manufacture legs with stiffness and damping similar to those 
found in insects.

NOMENCLATURE
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moment of inertia
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mass

phase shift between force and displacement

angular displacement in time domain

time constant equal to 

amplitude or initial value

transient part of modulus/stiffness

storage part of modulus/stiffness

quantity associated with relaxation experiments

dynamic storage modulus

dynamic loss modulus

complex conjugate

INTRODUCTION

Materials found in Nature differ significantly from those
found in human-made devices. Nature appears to design for
“bending without breaking” and employs tissues that are
compliant and viscoelastic [Vogel, 1995] rather than stiff,
homogenous, and isotropic. Even “stiff” natural materials, such
as the calcified shells of crabs, have local areas that bend,
buckle and bulge during motion [Blickhan, Full, and Ting,
1993]. In addition, local variations in biological materials,
tailored to meet local variations in loading, are common.

The nonlinear, compliant, and inhomogenous materials found
in even the simplest animals provide them with a sophistication
and robustness that today's robots cannot match. However, as
our ability to analyze and fabricate mechanisms with compliant
and functionally-graded materials improves, we have the
opportunity to develop robots whose structures draw inspiration
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from simple animals such as insects and crustaceans.

One fertile area for biomimetic design is the legs of walking
or hopping robots, where leg compliance has been recognized as
especially important [Raibert, 1986]. Biologists studying
subjects ranging from mammals to arthropods have also shown
that natural legs are carefully designed and tuned for passive
compliance. The deathhead cockroach (Blaberus discoidalis)
possesses legs with compliant muscles and skeletal components
that increase dynamic stability and disturbance rejection [Full
and Koditschek, 1999] [Kubow and Full, 1999] [Meijer and
Full, in press]. Leg compliance also varies dynamically.
Running animals adjust the overall compliance of their legs to
decrease impact forces and minimize energy costs [Alexander,
1990] while humans adjust their leg compliance to
accommodate changes in surface hardness, stride frequency,
mass, and leg inertia [Ferris, et al, 1998] [Farley, et al, 1998]
[Farley and Gonzalez, 1996] [Obusek, et al, 1995]. 

For mobile robots to approach the speed and robustness of
legged animals, we are inspired to reproduce some of the critical
mechanical parameters found in natural legs. These
characteristics - such as compliance - have traditionally been
achieved through either sensing and control algorithms or
discrete mechanical devices such as coil springs and pneumatic
cylinders. However, inherent advantages exist in producing
these parameters through mechanisms with intrinsic properties
and local variations tailored for locomotion; with this approach,
we can simplify controls and fabricate robots possessing
robustness and speed closer to those of simple animals.

One method for manufacturing such robots is Shape
Deposition Manufacturing (SDM), a rapid prototyping
technology [Merz et al., 1994]. SDM addresses many of the
limitations of traditional manufacturing and assembly methods
by enabling the simultaneous fabrication and assembly of
mechanisms with complex geometry and heterogeneous
materials [Binnard, 1999] [Cham et al, 1999] [Bailey et al,
1999].

Design and fabrication of layered and heterogeneous
materials (also called Functionally Graded Materials - FGMs)
has recently been a focus of research [Fessler et al, 1997]. For
the manufacture of biomimetic components, FGMs enable us to
control local variations by selectively depositing soft and hard
materials.

To produce biologically inspired components of biomimetic
mechanical properties, a bridge between biological findings and
SDM design specifications is needed. The first requirement is to
characterize biological structures and translate the
characteristics into quantitative specifications for mobile robots.
The second requirement is to model SDM material behavior to
facilitate component design to meet these specifications.

To address these requirements we first performed
experiments on a hind leg of Blaberus discoidalis and described

its response to both step displacement inputs and sinusoidal
displacement excitations. Next, we tested one of the materials
used in SDM, a polyurethane polymer chosen for its qualitative
similarity to insect cuticle, and fit the results to standard
viscoelastic materials and models. Comparison and
understanding of the mapping between these two studies enable
us to begin to design and manufacture legs similar to those
found in biology.

BIOLOGICAL CHARACTERIZATION

The cockroach legs and urethane polymers are both
composed of long molecular chains. These chains move with
respect to each other during macroscopic deformation, causing
the material to exhibit viscoelastic behavior such as stress
relaxation, creep, unrecoverable deformation, and hysteresis. 

To obtain specific viscoelastic measures of standard
materials, creep, relaxation, or dynamic experiments are
performed and the results fit to the Maxwell, Voigt, or Standard
Linear Solid models (Fig. 1). Researchers have also used these
models to fit biological materials such as human bones and
rabbit skin [Lakes, 1979] [Fung, 1994].

Experiment Setup and Results

Relaxation and dynamic experiments were carried out on the
hind leg of Blaberus discoidalis to aid in the selection of a
material behavior model and to quantify measures of roach leg
response. During testing, the coxa of the ablated metathoracic
limb (hind limb) of the cockroach was epoxied to 3/8” plexi-
glass such that the coxa-femur and femur-tibia joints were free
to rotate. One end of a stainless steel pin was attached to the
distal tip of the tibia with cyanoacrylate and the other end to the
arm of a servo-motor system (Aurora Scientific, Inc.) with
dental impression compound (Kerr). The servo-motor system
inputs a time variant deflection while simultaneously measuring
force (Fig. 2). The error associated with the entire system is
estimated to be less than 4 %.

Damping
component

Elastic
component

(a) (b) (c)

Figure 1.    Viscoelastic models. (a) Maxwell model, (b) 
Voigt model, and (c) standard linear model.
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The cockroach leg was displaced in a direction orthogonal to
the joint motion at amplitudes of 0.1 mm, 0.3 mm, 0.5 mm, 0.7
mm, and 1.0 mm. These values were chosen since observations
of locomoting Blaberus show that the deflection of the hind leg
in this direction was less than 1.0 mm. Step inputs at these
amplitudes produced relaxation histories where the reaction
forces initially peaked and then attenuated to constant force
levels (Fig. 3).

Dynamic tests with sinusoidal displacement inputs ranging in
frequency from 0.01 Hz to 100 Hz were performed. The
Blaberus has a preferred trotting frequency of approximately 12
Hz, at which it behaves similar to an inverted spring/pendulum
[Full and Tu, 1990] [Blickhan and Full, 1993]. At low
frequencies and small amplitudes, the force-displacement
hysteresis curve was very similar to that expected for a linear
viscoelastic solid (Fig. 4a). As the frequency and amplitude
increased, the response grew increasingly nonlinear such that, at
vibration frequency greater than 40 Hz, the curve became
skewed (Fig. 4b). Therefore, some of the data such as phase
angle are calculated only for frequencies equal to or lower than
40 Hz. In addition, some of the force-displacement plots are not
centered about zero-zero due to an initial negative force offset
present during the trials.

Servo
Motor

Roach
leg

Displacement Input
Force Output

Figure 2.   Cockroach hind leg test setup.

Figure 3.   Reaction force relaxation histories of the 
Blaberus leg in response to step displacement inputs at 
five amplitudes.
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Associated with this hysteresis curve is a phase shift in which
the measured output force leads the input displacement. This
phase shift is similar to the ‘loss angle’ in viscoelastic materials.
Fig. 5 plots the phase shift for vibration frequencies between
0.01 Hz and 50 Hz, where the hysteresis curve approximates
that of a viscoelastic solid. At low frequencies, an average
stiffness of 45 N/m can be directly read from the plots by taking
the slope of the line connecting the tips of the force-
displacement loops [Blickhan, 1986]. 
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Figure 4.   Force-displacement response for the Blaberus 
leg under sinusoidal deflections. (a) 0.02 Hz and 0.01 
mm, (b) 50 Hz and 1.0 mm.
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Model of cockroach leg

The results of these tests indicate that a cockroach leg excited
in a direction orthogonal to the joint direction behaves similarly
to a viscoelastic material. The exponential nature of the force
relaxation curves suggests viscoelasticity. The hysteretic nature
of the force-displacement curves indicates that there is energy
loss due to the internal friction, which is a common
characteristic for viscoelastic materials.

The cockroach leg and joints are subject to a combination of
bending and torsion in the experiment. The overall effect can be
modeled as a torsion spring with a moment arm (Fig. 6).
Additional assumptions for the model include:

1. The axis of rotation for the leg is kept approximately con-
stant during torsion. 

2. The joint material can be approximated using a lumped-
parameter element with uniformly distributed linear vis-
coelastic properties. 

Model of relaxation test results. With this simplification, the
relaxation test results imply that the step response of a
cockroach leg under a constant rotation angle can be
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Figure 5.   Phase shift (force leads displacement) from 
sinusoidal displacement inputs.

Figure 6.   Model of the cockroach leg as a torsion 
spring with a moment arm.
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mathematically described by:

(Eq. 1)

Where Mr(t) is the reaction moment relaxation history due to the 
step angular input θ0, B is a constant associated with the leg and 

joint geometry, G1 is the transient part of the shear modulus, and 
G2 is the equilibrium shear modulus after infinite time. 

Recognizing that torsion is caused by the force applied on the
tip of the tibia, one can rewrite Eq. 1 as a relation between force
and displacement:

(Eq. 2)

Where fr(t) is the reaction force recorded in the relaxation
experiment, a0 is the amplitude of the sinusoid deflection, and l

is the arm of the torque moment. 

Eq. 2 can be solved for BG1 and BG2 by considering the cases

of t = 0 and as t approaches infinity:

 and . (Eq. 3)

By plugging the force-displacement relation (Eq. 2) into the
cockroach leg relaxation data (Fig. 3), one can obtain the time
constant τr as 1.92 seconds. The exponential expression of the
shear modulus is not available since the geometric factor B is

unknown. However, we can derive that 

and .

Correlation with Standard Linear Model. The experiments
on the cockroach leg can be modelled from a linear perspective
as shown in Fig. 7. The force and displacement relation in the
frequency domain for this system is:

. (Eq. 4)

By comparing the step response predicted by this model with
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Figure 7.   Macroscopic model of cockroach leg used 
for analysis of displacement step response.
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Eq. 2, one can obtain simple expressions of the stiffness and
damping parameters from the viscoelastic property data.

, , and (Eq. 5)

For the cockroach leg, K1 = 34.5 N/m, K2 = 29.8 N/m and C =
49.4 Ns/m.With K1, K2 and C, one can predict the force
relaxation history as shown in figure 8. Figures 3 and 8 are then
compared for evaluation of the modeling accuracy and possible
experiment errors.

Model of sinusoidal excitation test results. The torsion spring
representation of the cockroach leg can also be applied to
analyze the dynamic response of the leg. The force response is
due to a combination of the reaction moment of the material and
the moment associated with the inertia of the leg and the
stainless steel pin.

(Eq. 6)

Where G* is the complex form of the dynamic modulus
combining G’, the dynamic storage modulus, and G", the
dynamic loss modulus.

(Eq. 7)

The sinusoid angular input in complex form is:

(Eq. 8)

The dynamic response of the cockroach leg in the complex
form is therefore:
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Figure 8.   Relaxation force history predicted by spring-
damper model.

Me G∗kθ I
d

2θ
dt

2
---------+=

G∗ G
′

G
″
i+=

θ θ0e
iωt

=

(Eq. 9)

Where ω is the angular velocity of the vibration and a0 is the
amplitude of the vibration.

Similar to the force relaxation case, results from the dynamic
experiment can not yield exact expressions of material shear
moduli, but rather with a geometric factor B:

, and (Eq. 10)

Where ∆ is the phase shift (loss angle) of the force versus the
displacement, F0 is the amplitude of the force (i.e., applied force

minus inertia force), and l is the length of the moment arm for
the input force. Application of the above expressions to the
dynamic test data yields the dynamic storage and loss moduli
(multiplied by the geometric factor) as functions of the vibration
frequency and amplitude. 

Correlation with Voigt model. The simpliest linear model can
be used to fit the dynamic response data is the Voigt model.
Experimental results show that the input displacement (x) and
the output force (f) differ mainly in magnitude and a phase shift
(∆). Mathematically, they can be described by:

 and . (Eq. 11)

Taking the Laplace transform of Eq. 11 and solving for the
transfer function F(s)/X(s) yields:

. (Eq. 12)

This transfer function is similar to that of a system consisting of
a spring of stiffness K in parallel with a damper with damping
constant C (Fig. 9):

. (Eq. 13)

In the above model, K and C can be obtained from the
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material property parameters BG’ and BG’’ .

 and (Eq. 14)

Since BG’ and BG’’ vary with the vibration frequency, the
resulting K and C are also functions of the frequency. Figure 10
predicts the damping constant according to equation 14. It is
shown from the figure that the damping decreases as the
vibration frequency increases. 

The K and C values obtained from equations 14 can be further
used to produce force-displacement hysteresis loops and
visually compared with experiment data (Figure 11). The model
appears good for low frequencies and small amplitudes of
vibration, when the cockroach leg behaves in a linear elastic
manner. For frequencies higher than 40 Hz or frequencies
higher than 16 to 20 Hz at deflection amplitudes of 0.7 and 1.0
mm, the fit degrades noticeably. This is largely due to the
nonlinear nature of the cockroach leg response at these vibration
values.

The model can also be evaluated quantitatively. Comparison
of the predicted and measured K show that they are extremely
close; the predictions are lower than measured values by an
average of 1%, with a standard deviation of 0.6%.

The energy loss for the viscoelastic material is caused by the
internal friction of the material. It is represented by the area
within the ellipse of stress vs. strain in dynamic loading. With
the stiffness K and damping constant C obtained before, we are
able to calculate the energy dissipation per cycle for different
frequencies and compared with the experimental measurement.
Figure 12 plots the deviation between predicted and measured
energy loss per cycle. The analysis shows that the C predictions
were more accurate at smaller amplitudes and lower
frequencies. For vibration amplitudes of 0.1 mm, 0.3 mm, and
0.5 mm, the average difference was 6% to 10%. For the 0.7 mm
and 1.0 mm amplitudes, the difference averaged 30% to 40%.
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Figure 10.   Predicted damping constant as a function of 
frequency.
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The lumped-parameter torsional model of the cockroach leg
appears to be adequate as an estimation of the behavior of the
cockroach leg at the range of amplitudes studied (0.1 mm to 1.0
mm) and at frequencies of less than 40 Hz. For higher
frequencies, the cockroach leg deviates significantly from the

-0.1 -0.05 0 0.05 0.1
-10

-5

0

5
x 10

-3

displacement (mm)

fo
rc

e
 (
N

)

experimental data
model fit        

Figure 11.   Comparison of Voigt model and experimental 
data. (a) 0.1 mm and 0.02 Hz, (b) 1.0 mm and 40 Hz.
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linear viscoelastic behavior predicted by these models.

Linkage between relaxation and sinusoidal results

The models shown in Fig. 7 and Fig. 9 are reminiscent of the
standard linear solid and the Voigt material models of
viscoelastic behavior (Fig. 1). The material properties derived,
BG1, BG2, BG’, and BG” , (the scaled loss modulus, storage
modulus, dynamic storage modulus, and dynamic loss modulus,
respectively) are also very similar to the material constants
associated with the standard linear solid model.This motivates
us to find a constitutive law for the cockroach leg material that
accounts for both the relaxation and sinusoid results.

In linear viscoelastic theory, the Boltzmann superposition
integral is used to express dynamic stress history [Lakes, 1999]:

(Eq. 15)

Combining the Boltzmann superposition integral with linear
viscoelastic theory enables us to create a link between the
constitutive measures G1 and G2 and the dynamic measures G’

and G” . If the standard linear solid model is used, BG’ and
BG” , the dynamic storage and loss moduli for sinusoidal shear
strain input, can be written in terms of the shear moduli, BG1

and BG2: [Lakes, 1999]

, and (Eq. 16)

Fig. 13 plots the predicted BG’ and BG”  moduli calculated
from the values of BG1 and BG2. For comparison, BG’ and BG”

calculated directly from experimental data (Eq. 10) at an
amplitude of 0.3 mm are also plotted.

These plots show that the standard linear solid model is good
to build a linkage between BG1, BG2, and the dynamic storage
modulus BG’. However the dynamic loss modulus BG” can not
be well predicted by a standard linear solid model. This
indicates that the properties of viscoelastic material are too
complex to be properly modeled by a simple constitutive law.
The same observation was reached in other viscoelastic
materials [Ferry, 1970] as well as prior experiments with human
cortical bone [Lakes, 1979]. 

The major contradiction between the commonly used linear
viscoelastic model and the biological material test for biological
materials is that the former predicts a phase shift that decreases
to zero as the frequency of excitation decreases. However, this
is not true for a cockroach leg excited in a direction orthogonal
to joint movement (Fig. 5).

σ t( ) E t τ–( ) εd
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ω2τ2
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1 ω2τ2
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---------------------BG1=

The phase shift (or loss angle) is the lag of the strain with
respect to stress in a dynamic loading. It is defined as a function
of BG’ and BG” :

(Eq. 17)

The phase shift has significant effect on the shape of the
hysteresis curve and thus the energy dissipation. In the
cockroach leg experiment, the energy dissipation at low
frequency is observed to be high, while that for a typical linear
viscoelastic model is low. Adaptations of the linear viscoelastic
model may yield a better representation of the behavior of
materials such as the cockroach leg. With better understanding
of how the material characteristics BG1, BG2, BG’, and BG”

relate to each other, we will better understand and characterize
the behavior of biological components such as the cockroach
leg.

SDM MATERIAL CHARACTERIZATION

The SDM process offers us the opportunity to integrate a
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range of desired impedance into the structure of robot legs for
improved robustness and simpler control. SDM-compatible
materials span a wide range of material properties and the SDM
process enables us to control local variations through
Functionally Graded Materials (FGM) [Cham et al, 1999]. 

An example of a FGM mechanism is shown in Fig. 14. It is a
five-bar linkage in which three of the joints have been replaced
with flexures. The structural material of the linkage is a grade of
polyurethane with high stiffness, while the flexible joint is a
soft, viscoelastic polyurethane. 

To control the compliance and damping associated with
mechanisms such as this, material property information beyond
what can be obtained from the manufacturer is needed;
therefore, these SDM materials must be characterized.

We have developed a dynamic testing machine (Fig. 15) for
this purpose. This testing machine is based on a voice coil
actuator; the machine controls force input and measures
subsequent displacement of the sample. The machine accepts
multiple fixtures and can undertake various torsion, bending and
tension tests for sample sizes up to 120mm x 120mm x 50mm.
The actuator is driven by a current amplifier which outputs the
current signal proportional to the output of a signal generator. A
0.9Kg full bridge thin beam load cell with signal conditioning
through a strain gauge processor measures the actuating force
while a LVDT measures the displacement of the actuator. Data
from the load cell and the LVDT are collected via a National
Instruments DAQ board controlled by a LabView program.

Dynamic Tests for the SDM Material

The dynamic test was performed on IE 90A polyurethane
(Innovative Polymers Inc.) which is used for building soft joints
as shown in figure 14. In preparing the sample, the resin and
hardener are mixed together by a weight ratio of 38:100. It is
then degassed in a vacuum chamber and poured into a wax mold
to form a cylindrical sample of 6.35mm in diameter and
63.5mm in length. The demolded sample was aged for 2 more

Figure 14.   A five-bar linkage with graded materials 
manufactured by SDM.

stiff material
graded transition

soft material

days before the test was performed.The sample was affixed
between two coaxial holders, resulting in an effective length of
21.6mm. The upper end of the sample was fixed on the fixture
platform, while the lower end was seated in a bearing which can
be rotated via an extension arm attached to the voice coil
actuator. The link mechanism between the actuator and the
sample clamp was designed for minimum friction. The
sinusoidal force was generated and the actuator displacement
was recorded for a vibration frequency ranging from 0.2Hz to
20Hz. Figures 15 and 16 show the resulting loss angle, dynamic
loss modulus and storage modulus following a similar
procedure to that in the cockroach leg analysis.
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Figure 15.   (a) Schematic drawing of test machine. 
(b) Close view of the test machine
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The possible error sources in the test are listed below:

1. - inertia and the friction of the clamp and the extension arm
that move with the bottom end of the sample.The effect of
inertia is shown in Eq. 6. The inertia and the friction of the
sample cause at most 0.2N or 10% error on the force mea-
surement at the 20Hz frequency.

2. - aging of the material which leads to the variation in vis-
coelastic property. The material tends to become harder
after days of aging.

3. - accuracy of the load cell. The load cell we are using has a
0.9Kg full scale range and can reach an error level of +-
20mN or +-1%.The error level can be reduced by calibrat-
ing the sensor, using smaller range sensors and increasing
the displacement range of the test. 

Design of Biomimetic Legs

With information regarding the mechanical behavior of
animal legs and the material behavior of SDM materials, we are
able to develop guidelines for biomimetic leg design. Previous
research has demonstrated that most animals can be modelled as
bouncing, spring-mass monopodes despite impressive
variations in leg number, leg length, position, and exoskeleton/
endoskeleton. This is because the energetics and dynamics of
trotting, running, and hopping animals are dynamically similar
within the locomotion method [Blickhan and Full, 1993]
[Blickhan, 1989].

For animals to locomote in a dynamically similar manner, the
relative vertical stiffness (Krel) expressed in Eq. 18 must be
relatively constant across animals utilizing the same type of
locomotion method.

(Eq. 18)

Figure 16.   Dynamic storage G’ and loss G” moduli 
for the soft polymer material.
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Where L is a characteristic leg length determined by the leg
length, the locomotion scheme, and the number of legs of the
animal, Fv is the vertical force applied by the animal on the
ground during midstance, and ∆L is the change in leg length that
results from this vertical force. For trotters, the relative whole
body stiffness Krel ranges from 7.1 (turkey) to 25.6 (kangaroo
rat) but averages around 18.6[Blickhan and Full 1993].

The whole vertical body stiffness at midstance for a specific
animal is:

(Eq. 19)

According to the viscoelastic model discussed previously, this
leg stiffness can be expressed as a function of the complex
dynamic modulus and the leg geometry:

(Eq. 20)

Where B is a geometric factor, L is the characteristic leg
length, and |G*| is the magnitude of the dynamic modulus that
varies with respect to the vibration frequency.

Insects tend to run at their natural frequencies to maximize
energy economy [Blickhan 1989]. This frequency can be
estimated from the vertical stiffness obtained from the
monopode model.

(Eq. 21)

Eq. 18 through Eq. 21 build a set of guidelines for relating
animal size, characteristic leg length, leg stiffness, locomotion
frequency, and leg material property for animals using similar
locomotion methods. Let us consider these guidelines with
respect to Nature’s design on the cockroach leg. A Blaberus
discoidalis is a trotter with body mass of approximately 0.003
kg. Geometric scaling against other trotters yields a virtual leg
length of 0.02 m. These values enable us to estimate the vertical
whole body stiffness as 25 N/m and the natural frequency as 91
rad/sec (14 Hz). At this frequency, the linear viscoelastic model
predicts a magnitude of B|G*| of 0.0069 Nm. Plugging this
value into Eq. 20 yields a leg stiffness of 18 N/m.

For comparison, data from the cockroach used to form the
monopode model yields an estimated vertical whole body
stiffness closer to 32 N/m. If we assume that the vertical whole
body stiffness of the Blaberus is evenly distributed among the
three legs of a tripod, then the individual leg stiffness should be
approximately 11 N/m. These observed and measured leg
stiffnesses are similar. The differences largely result from
approximations made in the monopode model and the dynamic
modulus being obtained in a direction not exactly vertical to the
ground at midstance.

K
F

∆L
-------

Krel

L
----------= =

Kleg
B G∗
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--------------=
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Having reviewed these equations for the cockroach leg, let us
attempt the design of a biomimetic leg. For a trotting robot with
a target mass of 0.26 kg and a characteristic leg length of 100
mm, the monopode model predicts the total vertical body
stiffness as 430 N/m. If this robot is a hexapod walking machine
with a tripod gait, the average stiffness per leg is approximately
140 N/m.

The simplest case of leg design might be a soft polyurethane
rod with diameter D and length Ljoint connected to a stiff linkage
of length L. Then Ljoint is:

(Eq. 22)

Where |G*| is the magnitude of the dynamic modulus. 

In order to find |G*|, we must first estimate the locomotion
frequency. The monopode model sets this at 6.5 Hz. The |G*|
value for the soft polyurethane material we have characterized

is about 4 x 108 Pa at that frequency range. If we make the
diameter of the rod 3.2mm, the required joint length Ljoint is
4.8mm. 

The above example is only an exercise demonstrating the
simplest case of the leg design. The leg is biomimetic only with
respect to stiffness and damping, but not in other aspects of
function. Real biomimetic legs are more complex due to
different loading conditions and joint geometry. However, once
the dynamic modulus property of the joint material is obtained,
one can always design the joint structure for the target leg
stiffness. 

CONCLUSIONS

Some polymer materials that can be used in SDM are similar
to the biological materials found in insect legs that exhibit
viscoelasticity. This inspires us to develop material models and
design methodologies that can be used to guide biomimetic
robot leg design and material selection. In this paper, we have
discussed a simple lumped parameter model used to
characterize cockroach leg behavior in relaxation experiments
and a linear model for characterizing leg response to sinusoidal
excitations. We have also developed a dynamic test machine
and characterized a polyurethane material used for SDM
fabrication of robot joints. 

The current model assumes linear viscoelasticity. The
correlation between the models and the results of experiments is
relatively good at low frequencies and small displacements but
deteriorates at higher frequencies and displacements as
nonlinear effects become pronounced. At very low frequencies
dynamic tests on cockroach legs indicate a higher loss modulus
than that predicted by a standard linear model. This inspires us
to develop a new material constitutive law to better simulate the
viscoelastic behavior of the leg in a wide frequency range. 

Ljoint
πD

4
G∗⋅

32L
2

Kleg⋅
---------------------------=

The effects of inertia and strain hardening effect have also
been neglected for making biomimetic robot limbs using SDM.
Further work will include more realistic models and the
development of design rules.
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