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Abstract
We demonstrate an adaptation strategy for adjusting the
stride period in a hexapedal running robot. The robot is
inspired by discoveries about the self-stabilizing properties
of insects and uses a sprawled posture, a bouncing alternat-
ing-tripod gait, and passive compliance and damping in the
limbs to achieve fast (over 4 body-lengths per second), sta-
ble locomotion. The robot is controlled by an open-loop
motor pattern that activates the legs at fixed intervals. For
maximum speed and efficiency, the stride period of the pat-
tern should be adjusted to match changes in terrain (e.g.
slopes) or loading conditions (e.g. carrying an object). An
ideal adaptation strategy will complement the design philos-
ophy behind the robot and take advantage of the self-stabi-
lizing role of the mechanical system. In this paper we
describe an adaptation scheme based on measurements of
ground contact timing obtained from binary sensors on the
robot's feet. We discuss the motivation for the approach,
putting it in the context of previous research on the dynamic
properties of running machines and bouncing multi-legged
animals, and show results of experiments.

1. Introduction

Resonance Tuning
We have built a family of hexapedal robots that are inspired
by discoveries concerning the locomotion of insects and, in
particular, of the cockroach. These animals run rapidly
(between 10 and 50 body-lengths/second depending on the
species) and over rough terrain using a combination of open-
loop muscle activation patterns and "preflexes," that is, pas-
sive mechanisms that stabilize the animals' motion in
response to perturbations (Ahn and Full, 1997; Full et al.,
1998; Kubow and Full, 1999; Meijer and Full, in press).
Like the insects that inspired them, the robots employ pas-
sive mechanical properties that enable them to run quickly

(over 4 body-lengths per second) and over hip-height obsta-
cles (see Fig. 1) without closed-loop control (Cham et al.,
2002; see also multimedia Extensions 1 and 2). Although
this approach works well in the laboratory, there is a ques-
tion about its versatility. How effectively can a particular
open-loop control and set of mechanical properties function
over a range of conditions that may include variations in
ground slope and hardness and changes in loading? Further-
more, the animals or robots themselves may change over
time. A limb may become damaged or the mechanical prop-
erties may vary with temperature. A way to address this
problem is adaptation, in which the parameters of the open-
loop control are automatically tuned to optimize perfor-
mance as conditions change.

Figure 2 illustrates an approach in which adaptation is
combined with preflexes for stable running. An open-loop,
feed-forward, motor controller generates the pattern of actu-
ator commands to achieve a steady alternating-tripod gait.
The kinematic arrangement and passive compliance and
damping of the limbs achieve the locomotion and provide
stable response to perturbations. Sensory information is
used at a slower rate to adapt, or tune, the motor pattern in
response to changing conditions. In running insects, an
important reason for relying on preflexes in combination
with slow adaptation is that neural conduction speeds are too
slow for feedback control to act effectively within each
stride period. In robots, of course, the same limitation does
not necessarily apply. However, for small and inexpensive
robots like our prototype, “Sprawlita,” the same approach
allows the use of simple sensors without concerns that actu-
ator delays, sensor noise or even failures will jeopardize
short-term performance. This is an important consideration
because many sensors become noisy when mounted on a
small hexapod running at 7-10 Hz.

This approach has been hypothesized as the basis for the
generation of rhythmic movements such as locomotion in
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animals (Orlovsky, et al., 1999; Full and Koditshek, 2000).
The presence of neural circuits called Central Pattern Gener-
ators (CPG) that can generate, in the absence of feedback,
efferent motor patterns similar to those seen during locomo-
tion is well established in both vertebrates and invertebrates.
During normal movements, however, it has been found that
sensory feedback from receptors in the skin, joints and mus-
cles plays an important role in modulating the frequency and
amplitude of the output of these pattern generators (Ros-
signol, et al., 1988; Orlovsky, et al., 1999). Moreover, it has
been hypothesized that this interaction between sensory
feedback and the pattern generator is designed to exploit the
dynamics of the physical system by tuning the motor com-
mands to the system’s resonant frequency (Hatsopoulos,
1996), thereby maximizing performance while minimizing
the amount of work utilized. The exact manner in which
sensory feedback might be used to accomplish this “reso-
nance tuning,” however, is still unknown.

Adaptation for a Biomimetic Running Hexapod
The basic design of the Sprawl family of hexapods con-

sists of a body and legs built up in layers using a rapid-pro-
totyping process called Shape Deposition Manufacturing.
The design and manufacturing are detailed in Cham et al.
(2002) and in Bailey et al. (1999). Each leg has two degrees
of freedom but only the thrust direction is actuated, using
pneumatic pistons embedded in the legs. When running, hip
rotations are passive and are accomplished by flexures of
visco-elastic material. This design is inspired by the tro-
chanter-femur joint in cockroaches, which is believed to be
mostly passive in the sagittal plane. A servomotor at each
hip is used only to establish the equilibrium position of the

hip joint. Binary contact sensors are attached to the feet.
Pneumatic solenoid valves regulate air-flow into the leg pis-
tons from a high-pressure source. The original Sprawlita
design uses two valves, one for each tripod of legs, embed-
ded in the body of the robot. These on/off valves are acti-
vated according to an open-loop binary motor pattern. A
newer design has a valve embedded in each leg, which
results in faster actuator dynamics and more control over the
timing of the thrust force at each foot. As will be seen in the
following sections, these are important considerations.
Depending on configuration, the robots weigh between
0.25-0.33 Kg and have a length of 10-15cm. Maximum
speeds range from 0.5-0.8m/sec with preferred stride fre-
quencies of 7-10 Hz.

The operational parameters that can be varied are the
stride period (length of time between activation of each tri-
pod) and the duty cycle (length of time that the valves are
kept open during each stride) of the motor pattern and the
equilibrium positions of the compliant hip joints. All of
these parameters contribute to running performance and
could be subject to adaptation. In this paper, we focus on
stride period and duty cycle.

Figure 3 shows the robot’s speed as a function of ground
slope for two different stride frequencies, and illustrates the
importance of adjusting the stride frequency to changing
conditions. On level ground the fastest locomotion is

 Figure 1. The hexapedal robot has a body and legs fabri-
cated by Shape Deposition Manufacturing (Cham et al.,
2002) and features embedded actuators and compliant
legs. Here the robot is crossing a hip-height obstacle with-
out using sensory feedback and without significantly slow-
ing down or being knocked off course.

2.5 cm

 Figure 2. A combination of stabilizing passive mecha-
nisms, or "preflexes," and sensor-based adaptation of an
open-loop feed-forward controller provides insects and
small robots with a robust, stable and versatile approach
to running over rough terrain.
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obtained with a frequency of approximately 10 Hz. But on a
20 degree slope, locomotion is considerably faster at 5 Hz
than at 10 Hz. The optimal frequency also varies somewhat
from one robot to the next due to manufacturing tolerances
and variations in the materials properties of the legs. Conse-
quently, there is a motivation to make the robots "self-tun-
ing" over a range of operating conditions. Ideally, we would
like an adaptation strategy that does not require adding
expensive or complicated sensors to the robot.

For these reasons, we examined the relationship between
ground contact times (obtained from binary sensors in the
robots' feet) and the timing parameters (frequency and duty
cycle) of the open-loop motor control. As will be discussed
in Section 3, of the various timing quantities that we can
examine, the interval between end of thrust (closing of the
pneumatic valve) and lift-off of the feet is a good indicator
for adjusting the stride frequency. To better understand why
this approach works, we first examine a simplified one-
legged vertical hopper model. Although the six-legged
robots are considerably more complex, their motion in
response to the firing of each tripod is qualitatively similar
to that of a single mass and foot.

2. Simplified Model for Open-Loop Locomo-
tion and Adaptation
To understand how monitoring the ground contact time can
provide information to the robot about the effectiveness of
its current motor pattern in running, we start with a simple
vertical hopping model that has been frequently utilized in
the literature. This model consists of a point mass con-
strained to move in the vertical direction with a telescoping
leg that comes into intermittent contact with the ground.
Compliance and damping as well as the ability to generate
thrust are commonly modeled in the leg. Although this
model cannot tell us about the coupling between vertical and

horizontal motion, an important factor in the dynamics of
the Sprawl robot family, it does shed light on the relation-
ship between system energy and actuator timing. It provides
insight into the circumstances under which a stable, steady-
state hopping cycle is achieved with an open-loop control
scheme and it helps us determine how to get the most work
out of our actuators using only simple sensors.

Variations on this basic model have been examined by
several investigators. Despite its apparent simplicity, the
one-legged vertical hopper exhibits a rich set of dynamic
behaviors including stable and unstable periodic motion.
Raibert (1986), Koditschek and Buehler (1991), and
Vakakis, et al. (1991) analyze one-legged vertical hopping
models in which thrust is activated in a closed-loop manner
when the leg reaches its maximum compression. Stable
open-loop models of vertical hopping were demonstrated
and analyzed by Ringrose (1997), Berkemeier and Desai
(1998) and Komsuoglu and Koditschek (2000). The effects
of varying the stride period of the open-loop motor control
pattern were considered by Ringrose (1997) and Berkemeier
and Desai (2000). Both observe that maximum hopping
height is achieved when thrust is initiated when the leg
reaches maximum compression, and that increasing the
stride period further results in unstable hopping. Using this
result, Berkemeier and Desai (2000) proposed an adaptation
law that senses the velocity at thrust activation and increases
the stride period until this velocity is zero, which occurs at
the leg’s maximum compression.

The physical implementation of the Sprawl robots requires
that minimal damping assumptions made in the previous
models mentioned be reconsidered. In insects, and in the
Sprawl family of robots, viscoelastic materials dissipate
substantial amounts of energy per cycle. Typical dimension-

 Figure 3. Robot ground speed versus terrain slope for two
different stride frequencies.  As shown, the optimal stride
frequency for maximum speed depends on the slope, which
illustrates the need for adaptation.
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 Figure 4.  Time history of a single degree-of-freedom verti-
cal hopper. The mass is attached to a massless leg with stiff-
ness k and damping b.  After some time toff, a thruster in
parallel applies a thrust force, f.  At some time tL, the mass
lifts off the ground and travels ballistically in the air.
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less damping ratios are on the order of  = 0.3 (Garcia et al.,
2000). Additionally, a model was needed to determine the
practicality of using a simple binary switch for feedback
instead of more complicated and noise-susceptible velocity
sensors.

We therefore consider a single-legged vertical hopper that
includes substantial viscous damping. Figure 4 depicts a
sample time history of this hopping model. The massless leg
has stiffness, k, damping, b, and an actuator that is able to
provide a thrust force f(t) that is initiated after some time toff
and terminated after a fixed duration, ton, or by lift-off,
whichever occurs first. The stride period begins at t=0 as the
robot touches down, which occurs when y=0, the spring’s
neutral length. During the ground contact phase, the ground
reaction force is given by:

(1)

The equation of motion for the mass is:
(2)

Lift-off occurs when the ground reaction force is equal to
zero, and the hopper transitions to an airborne phase, where

it travels ballistically. In the next section, we consider the
conditions for optimal hopping height of this model.

2.1 Optimal hopping height
In steady-state, the landing velocity of one cycle must equal
the landing velocity of the previous cycle. Simulations and
analytical and numerical calculations, detailed in Appendix
A, were performed to determine which values of force appli-
cation delay, toff, and force duration, ton, meet steady state
conditions for given values of m, k, b, g, and force f. Each
solution pair (toff, ton) corresponds to a steady-state hopping
cycle with a given steady-state hopping height. Figure 5
shows the steady-state hopping height of these solutions
plotted against the velocity at which thrust is initiated for
m=g=k=1, b=0.2, and f=4 and for a range of thrust dura-
tions. The velocity at thrust activation on the horizontal axis
of the figure is normalized by the velocity at take-off for
each steady-state solution. This normalized velocity is zero
if thrust is initiated at maximum compression, approaches -1
if thrust is initiated at landing, and approaches +1 if thrust is
initiated near take-off. Each line represents the set of solu-
tions for a given thrust duration ton, here specified as a per-
centage of the natural period .

Figure 5 shows that for thrust durations greater than 20%
of the natural period, peak hopping height is achieved when
the thrust is applied near the point of maximum spring com-
pression, that is, when the velocity at activation is nearly
zero. For shorter thrust durations, however, optimal steady-
state heights occur when thrust is initiated after maximum
spring compression (velocity at force application is posi-
tive).

In evaluating the conditions that determined the maximum
hopping heights in Figure 5, it is seen that, for a given force
level and duration, hopping height is maximized at the
steady-state solution in which the net positive work per-
formed by the actuator within a stride is maximized:

(3)

ζ

 Figure 5. Hopping height as a function of normalized veloc-
ity at thrust application for the one-DOF hopper. Each line
represents the solutions to the steady-state constraint equa-
tions for a given set of operating parameters and thrust
duration.
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constant thrust force, the work performed is proportional to
the net change in leg length during thrust.
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If f(t) is constant, then this integral is proportional to the
change in leg length between thrust activation and deactiva-
tion, as illustrated in Figure 6. For the case in which thrust is
applied until the end of the ground contact phase, here called
“Long Thrust,” this integral is maximized when thrust acti-
vation coincides with maximum compression, when the leg
velocity is zero. However, for the case in which thrust ends
before the end of the ground contact phase, here called
“Short Thrust,” the conditions for the maximization of this
integral are more complex but can be shown to roughly
coincide with maximizing the upward velocity at thrust acti-
vation (while still achieving end-of-thrust before lift-off).

2.2 Effects of varying stride period
Figure 7 shows a typical example of the effects of chang-

ing the stride period of the open-loop motor pattern for the
“Long Thrust” case with a given thrust magnitude, f, natural
frequency, w, and damping ratio, ζ. For short stride periods,
hopping height starts out very small, as shown in the top
plot. At these periods, thrust application starts well before
maximum compression, given by the negative velocity at
thrust application (in the figure, this velocity is normalized
by the magnitude of the take-off velocity). These solutions
are termed “Regular Hopping” as they represent a desired
mode of hopping behavior. As the stride period is increased,
hopping height increases, and velocity at application
approaches zero. Finally, at a certain period (near 275ms

period), height is maximized when velocity at application is
nearly zero, as predicted. Simulations of the hopper, though,
never reach this point. As shown in the figure, other solu-
tions to the state-steady conditions become available at a
period near 250ms as the continuum of solutions folds back
with respect to stride period. Of the two new sets of solu-
tions available in this range of stride periods, one of them
involves activating thrust after maximum compression and
is generally found to be unstable. The solutions in the sec-
ond set are termed “Hop-settle-fire” as the mass has started
to settle before thrust is applied. The hopping heights for
these solutions are much lower, but they are generally more
stable, and the simulations converge to these solutions.

Figure 8 shows a typical example of the effects of chang-
ing the open-loop stride period for the “Short Thrust” case.
For short periods, the solutions start out as “Regular Hop-
ping.” As the period is further increased, the velocity at
thrust activation increases, and changes from negative
(thrusting before maximum compression) to positive (thrust-
ing after maximum compression), while still maintaining
stable hopping. Maximum hopping height is also increased
with period and keeps increasing until the continuum of
“Short Thrust” solutions ends as thrust deactivation starts to
occurs after the leg leaves the ground. Thus, hopping height
is maximized when thrust is deactivated just as the leg loses
contact with the ground. Near 275ms period another contin-
uum of valid steady-state “Short Thrust” solutions begins.

 Figure 7. Effects of changing the stride period on steady-
state motion and stability for the one-DOF hopper case in
which thrust application ends at or after lift-off.
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 Figure 8.  Effects of changing the stride period on steady-
state motion and stability for the one-DOF hopper case in
which thrust application ends before lift-off.
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This is again the “Hop-settle-fire” solution, for which hop-
ping height is lower. The stability of these steady-state solu-
tions is addressed in more detail in Cham (2003).

In general, the onset of the “Hop-settle-fire” solutions is
determined by the system’s natural frequency. These solu-
tions become available when the period of thrust application
is long enough that the system is allowed to settle according
to its natural period. The addition of damping also makes
these solutions possible, since without damping the system
would not settle.

2.3 One-DOF model conclusions
From the analysis above, we draw the following observa-
tions which we postulate generalize to similar hopping sys-
tems with clock-driven activation pattern:
1) For a wide range of activation periods, there exists one or
more solutions to the steady-state conditions. These solu-
tions may or may not be locally period-1 stable. If there are
multiple solutions for a given period, the system will con-
verge to the most stable solution, or may vacillate between
equally stable solutions.
2) A given solution is such that the total amount of energy
does not change within the stride period (the total amount of
energy injected by the forcing function equals the total
amount of energy passively dissipated). Since the magnitude
and duration of the forcing function are determined by the
stride period and duty cycle of the open-loop activation pat-
tern, a given solution will entail a phase difference between
the forcing function and the motion of the system such that
the forcing function may perform both positive and negative
work.
3) The total amount of energy within a stride is maximized
when the forcing function performs the most positive work,
given by the force-velocity integral in Equation 3. With a
fixed thrust magnitude, this integral depends on the velocity
at the start and end of thrust relative to the point of maxi-
mum compression such that it is proportional to the net
change in leg length during thrust application. Activating
thrust at the leg’s maximum compression may not be opti-
mal in terms of maximizing the amount of work performed
by the actuator if thrust duration is limited.
4) In general, increasing the stride period tends to increase
the velocity at both the start and end of activation and maxi-
mize the work input integral. However, as shown, increasing
the stride period will eventually result in unstable behavior
(as in the “Long Thrust” case) or in “Hop-settle-fire” behav-
ior, where the system settles to equilibrium between thrust
periods.

These observations suggest that a simple way to infer how
effectively the actuator is being utilized is to monitor the
start and end of thrust relative to the motion of the body.
Since we are interested in using only simple sensors such as
binary contact switches, we pay particular attention to the
relationship between end of thrust activation and the end of

the ground contact phase, or lift-off. The one-DOF analysis
suggests that steady-state solutions in which the end of
thrust occurs well before or after lift-off can be suboptimal
in terms of the work input integral within one stride. This
simple heuristic is explored and validated with experimental
results of the multi-DOF hexapedal robot in the following
section.

3. Stride Period Adaptation

3.1 Robot performance tests
The one-DOF model provided insight into the basic behav-
ior of an open-loop hopping system in terms of the work
performed by the actuator and the resulting performance. In
order to develop an adaptation law for the six-legged, multi-
DOF robot, we must look at the factors that affect its perfor-
mance and see whether the same basic mechanisms are evi-
dent. Figure 9 shows the performance results of the
hexapedal robot as a function of open-loop stride period for
three different cases. The dotted lines represent the results
for a first prototype, here called robot 1, running on flat
ground. The solid lines are for the same robot on flat
ground, but with different actuators, here called robot 2. The
new actuators are pneumatic pistons with faster air flow and
less damping. Finally, the dashed lines are for robot 2 run-
ning on a 5 degree uphill slope.

 Figure 9. Performance tests for the hexapedal robot in flat
ground and uphill terrain, as a function of open-loop stride
period with constant duty cycle percentages.
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As shown in 9a, speed is maximized at different stride
periods for different conditions, again motivating the need
for self-tuning or adaptation of the stride period. Starting at
high values of the stride period, the motion of the robot was
observed to be associated with “Hop-settle-fire” behavior
similar to that observed in the one-DOF model, where the
stride period is long enough that much of the energy from
the previous hop is dissipated before thrust is initiated. As
the period is decreased, speed increases and then levels off.
This levelling off of the speed curve as stride period is
decreased corresponds to the point in which stride length,
plotted in Figure 9b, is no longer maximized. Although
stride length decreases for shorter stride periods, speed con-
tinues to be maximized, due to the fact that speed is the
product of stride length and the inverse of stride period.
However, speed dramatically decreases below a certain
period, due to the limitations in bandwidth of the pneumatic
actuators, which limits the maximum speed attainable. Thus,
speed is maximized over a range of periods bounded on one
side by the bandwidth of the actuators, and on the other side
by the stride period in which stride length is maximized.

As a goal of the adaptation, we choose the period in which
stride length is maximized. Although speed continues to be
maximized for shorter stride periods, the gain in speed is
small relative to the increased energy consumption due to
higher stride frequencies and lower efficiency. To find the
stride period at which stride length is maximized, we inves-
tigate whether maximizing this measure of performance is
related to maximizing the amount of work performed by the
actuators, as suggested by the simplified model analysis.

Since work performed by the actuator is difficult to mea-
sure directly, we observe it indirectly through measurements
of thrust timing relative to the motion of the system, again as
suggested by the analysis. In the case of the Sprawl robots,
the legs do not have a spring along the length of the leg with
a nominal length that determines when ground contact
occurs. Instead, for a given leg, contact with the ground
occurs when the pistons extend, shortly after the valves are
activated. Thus, thrust activation and landing occur a fixed
time delay apart. Take-off, or loss of contact with the
ground, on the other hand, occurs either when the leg
reaches maximum extension, or when thrust is deactivated,
which causes the leg to retract. As a result, we can indirectly
measure the work performed by the actuator by looking at
the time delay between the time that the valves are deacti-
vated, and the time that take-off occurs. As indicated by the
analysis of the simplified models, work is maximized when
thrust deactivation occurs near the time that take-off occurs,
given by the leg reaching maximum extension. Suboptimal
work occurs when thrust is deactivated well before or well
after maximum extension occurs.

The time difference between td, the time that thrust is
deactivated, and tT, the time that take-off occurs, (td - tT), is

plotted in Figure 9c for the different cases examined. This
time delay, (td - tT), is positive for long stride periods, which
indicates that thrust application ends after lift-off, here
caused by end-of-stroke or full extension. This delay also
monotonically increases for longer periods since the time of
thrust application is set as a fixed percentage, or duty cycle,
of the stride period due to valve and air flow limitations.
Below a certain range of stride periods, however, the time
delay is a nearly constant small negative value. In effect,
deactivation of the tripod causes the spring-loaded leg pis-
tons to retract and lose contact with the ground before full
extension.

This change in the slope of the time delay (td - tT) relative
to the stride period occurs near the period for which stride
length begins to decrease and ground speed starts to level
off. Although the dynamics of the robot’s locomotion are
affected by many factors, it is apparent that the stride period
in which the amount of net positive work performed by the
actuators is maximized, as indicated by the time delay (td -
tT), has a first-order correlation with the period in which
stride length is maximized. This correlation is used as the
basis for the simple adaptation law described in the follow-
ing section.

3.2 Adaptation strategy
The results from the previous sections motivate the robot
stride period adaptation strategy described here. As illus-
trated by the one-DOF model, it is advantageous to use a
stride period that results in a steady-state cycle in which
thrust is deactivated near the point where full piston exten-
sion occurs in order to maximize work input. Similar to the
one-DOF model, lower stride periods result in sub-optimal
work input as thrust is terminated before full extension.
Moreover, like the one-DOF model, higher stride periods
result in “Hop-settle-fire” behavior and sometimes in
period-1 unstable oscillations. A prototype adaptation law
for maximizing ground speed that takes these findings into
consideration using foot contact information is as follows:

(4)

 Here, Kp is the adaptation gain, tv is a constant offset
parameter, td is the time at which the valve is deactivated
and tL is the measured lift-off time of the middle-foot. Fig-
ure 10 illustrates what these quantities represent, where time
is measured with respect to the initiation of the gait cycle,
which starts when the valve for one of the tripods is acti-
vated. In this case, the adaptation law is applied such that
the stride period is updated at the end of every stride cycle
that ground contact information is measured. Ground con-
tact is measured by a binary switch attached to the middle
foot of the same tripod. The deactivation time td is deter-
mined by the stride period, τ, and duty cycle, which in this

τn 1+ τn Kp td tL– tv–( )–=
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case is specified as a fixed percentage of the stride period. If
there is no measured lift-off time, tL, then the period is not

modified.
Intuitively, this simple adaptation law can be described as

trying to decrease the stride period as much as possible
without exceeding the bandwidth of the actuators and with-
out terminating the thrust application before full extension
(to maximize available work). The stride period reaches an
equilibrium value when ∆τ is zero, which occurs when (td -
tL) is equal to the offset value, tv. Conditions for conver-
gence of this adaptation law are derived in Appendix B, and
include selection of an adaptation gain, Kp, such that:

(5)

where s is the rate at which the time delay (td - tT) increases
as a function of stride period for long stride periods. This
condition is an absolute bound for stability, assuming that
gait dynamics are negligible compared to the update rate of
the adaptation law. In practice, if adaptation is needed to
proceed at a comparable rate to the gait dynamics, then a
lower value of Kp must be selected to ensure stability.

The offset value tv should be selected near and slightly
above the nearly constant baseline value of (td - tL) for short

stride periods, here called b. This ensures that the equilib-
rium stride period coincides with the change in slope (see
Figure 10). In practice, considerable noise exists in the mea-
surement of (td - tL), such that tv cannot be selected too close
to b, resulting in an offset error between the equilibrium
stride period and the period at which the change in slope
occurs.

3.3 Adaptation Results and Discussion
Figure 11 shows test results of the adaptation law imple-
mented in the hexapedal robot 2 running on flat ground for
several experiments in which the stride period was started at
suboptimal values (see multimedia Extension 3). Figure 11a
shows the ground speed of the robot as a function of time,
and Figure 11b shows the stride period used to activate the
tripods as it is changed by the adaptation law. The gain Kp
was experimentally chosen to give the adaptation a fast
learning rate while still achieving convergence. Note from
Figure 11b that, although only a simple contact switch was
used, the measured values of tL are still prone to some noise,
due to ground imperfections or disturbances to the robot,
and adaptation does not necessarily proceed smoothly. This
adaptation strategy was also shown to optimize speed in
robot 1, with different pneumatic pistons, and for the case
where the input actuator pressure was decreased in robot 2
by 13% (shown in Figure 12).

For an uphill ground slope of 5 degrees, the adaptation
strategy also converges to an equilibrium stride period, as

 Figure 10. Simple gait period adaptation law based on the
measured duration between foot contact events. A binary
switch in the robot’s middle foot provides contact informa-
tion. This time duration is compared to the actuator valve
deactivation time for the adaptation law.
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 Figure 11. Adaptation results for flat terrain (dashed lines
are approximate optimal values established empirically).
The figures show the ground speed of the robot and the
stride period as it is adapted from suboptimal starting condi-
tions.
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shown in Figure 13 (see multimedia Extension 4). This new
equilibrium period (~170ms) is higher than the equilibrium
period for flat ground running (~110ms) and results in faster
uphill running than with the optimal period for flat ground.
However, the new equilibrium period is somewhat higher
than the period found to be optimal at 5 deg. slopes
(~140ms). This indicates that, although it works to improve
locomotion speed when transitioning to sloped terrain, the
simple threshold-based adaptation law implemented here
results in errors in the optimal equilibrium stride period for
uphill running. This is mainly attributed to the gradual
change in slope in the plot of (td - tL) for 5 deg uphill terrain
compared to the prominent “kink” in the corresponding plot
for flat terrain (see Figure 10). The use of a threshold to
detect this change in slope results in equilibrium periods that
are longer than optimal. Future work will experiment with
more sophisticated ways to detect this change in slope. Fur-
thermore, the factors that affect uphill running may need to
be re-examined. For example, in seeking to increase the
stride frequency for optimal ground speed in flat terrain, the
prototype adaptation law presented here reduces oscillations
in the direction normal to the ground, which we believe may
have a significant role while climbing up-hill terrain.

4. Conclusions and Future Work
The analyses and experiments in the previous sections show
that for an open-loop running robot, stride frequency and
thrust duration are important parameters that govern hop
height and forward speed. The single legged hopper model

reveals that optimal hop height is obtained by maximizing
the product of thrust force and velocity over the thrust dura-
tion. However, this product is subject to both dynamic con-
straints and hardware limitations. The dynamic constraints
include the requirement of a stable, steady-state periodic
solution to which the system will converge. Significant pas-
sive damping, as found in insects and in robots like Sprawl-
ita, increases the regime of stable, periodic operation with
open-loop forcing. The hardware limitations include the
stroke length, the speed at which the piston can be filled and
exhausted and the maximum thrust force available.

An adaptation strategy for the stride period that takes these
limitations into account and tries to optimize ground speed
was presented in this paper. The adaptation law seeks to
obtain the most work from the actuators without exceeding
their bandwidth. This adaptation law uses only the sensed
duration of ground contact during each stride, and was
shown to cause the stride period to converge to optimal val-
ues for a range of robot-to-robot variations and operating
pressures. When making the transition from level to uphill
running, the adaptation law improves locomotion, but con-
verges to somewhat suboptimal values of stride period and
velocity. The difficulty in this case is that the transition
between optimal and over-long periods is less distinct and
less easily identified with the simple threshold test used.
More sophisticated detection of the transition is an area of
ongoing work.

More generally, the adaptation scheme presented in this
paper is an example of an approach that is particularly well
suited for small, biomimetic robots by requiring no expen-

 Figure 12. Adaptation results for flat terrain with a 13%
decrease in pneumatic actuator input pressure. The adapta-
tion optimizes ground speed by converging to a slightly
higher stride period than in Figure 11.
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 Figure 13. Adaptation results for an uphill slope of 5
degrees. The adaptation strategy improves the locomotion,
but converges to a stride period slightly higher than the
optimal stride period.
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sive or sophisticated sensing or feedback. In this case, only
simple binary switches are needed to provide an estimate of
ground contact time. The adaptation scheme takes advan-
tage of the passive properties of the robot that allow it to run
stably over a range of open-loop stride frequencies and actu-
ator duty cycles. In the event of sensor failure, the perfor-
mance of the robot degrades only to that of the open-loop
system without adaptation. This approach allows the robots
to remain simple, inexpensive and robust while also being
able to "tune" themselves to accommodate individual vari-
abilities and changes in operating conditions.

Future work will build upon the simple adaptation law
tested in this paper to incorporate other simple sensor infor-
mation (e.g. tilt sensor, contact switches in other feet) in
order to increase performance and adaptability. As dis-
cussed previously, further understanding of the robot’s
dynamic interaction with different types of terrain such as
sloped or compliant surfaces will allow us to increase the
adaptation’s versatility. Finally, future work will study the
effects of such an adaptation law on other types of behavior,
such as rapid turning and navigation.
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Appendix A - Vertical Hopper Model

Equations of Motion
The equations of motion for the one-DOF hopper in Figure
4 can be written, in normalized coordinates, as:

(A.1)

where A and B are defined as:

(A.2)

during the stance, or ground-contact phase, and:

(A.3)

during the airborne, or ballistic, phase. w is the natural fre-
quency and  is the damping ratio of the mass-spring-
damper system. The thrust force f(t) is determined by the
open-loop motor control pattern:

(A.4)

where Tn is the normalized thrust magnitude. Here, t is reset
to t=0 when t reaches . This system is treated as a piece-
wise affine linear hybrid dynamic system with continuity of
state at the mode transitions (Branicky, et al., 2000). The
three modes are termed “AIR” (airborne phase), “ON”
(stance phase with active thrust) and “OFF” (stance phase
with zero thrust). The time solutions of the state vector X(t)
for the three modes are:

(A.5)

Here, Xo is the state at the beginning of each mode and
Xeon and Xeoff are the equilibrium states for each of the

stance modes:

(A.6)

Return Maps
In order to study the steady-state motion and local stability
of the hopper, we define a return map F(Xn) based on the
state at thrust application, Xn (Sastry, 1999). Since mode
switches are both a function of the state and of the open-
loop motor pattern, the system trajectory can undergo an
indeterminate number of sequences of mode changes. In this
analysis, we consider the two hopping behaviors character-
ized as “Long Thrust” and “Short Thrust.” In “Long
Thrust,” we assume that the hopper lands and activates
thrust during stance, and that the thrust application duration
is long enough to continue until or past lift-off, such that the
mode sequence is ON-AIR-OFF.   In “Short Thrust,” we
assume that the hopper lands and also activates thrust during
stance, but that thrust application ends before lift-off, such
that the mode sequence is ON-OFF-AIR-OFF. 

For “Long Thrust,” we introduce the two timing variables
ton (duration of active thrust application) and ta (1/2 the
duration of the airborne phase). To derive the return map,
we take advantage of the facts that the take-off velocity
(velocity at the ON-AIR mode transition) is the negative of
the landing velocity (velocity at the AIR-OFF mode transi-
tion) and that this velocity is, in normalized coordinates,
equal to ta. We also take advantage of the fact that the total
duration of the modes must equal . The return map can
then be found by nesting the time solutions for the individ-
ual modes in the ON-AIR-OFF sequence:

(A.7)

In order to find the steady-state solutions, or “fixed
points,” we impose the constraint Xtakeoff = -Xlanding = [0

ta]T and seek an expression with only two unknowns:

(A.8)

which implies:

(A.9)

This set of equations is solved numerically, where our
solution vector is [ton  ta]. If a solution exists, it may be
unique or there may be multiple solutions. Once found, the
solution [ton

*  ta
*] can be used to find X*, which satisfies:

(A.10)
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The return map for the “Short Thrust” mode sequence can
be similarly found by nesting the time solutions in the ON-
OFF-AIR-OFF sequence (see Cham, 2003, for more
details).

Appendix B - Stability of the Adaptation Law
In this section we address the stability of the adaptation law
presented in this paper. As stated, the adaptation law uses a
simple threshold-based feedback law, presented in Equation
9. For simplicity in the derivation, we will rename some of
the terms, such that the adaptation law becomes:

(B.1)

where K is the adaptation gain, t is the constant offset
parameter, d is the delay between the time the valve is deac-
tivated and the time that loss of contact is measured in the
middle-foot. Tn and Tn+1 are the current and the updated
stride periods respectively.

To derive conditions on t and K for which the adaptation
law will converge, we first assume that the time delay
between deactivation and lift-off can be modeled as a direct
function of the stride period, d(T). Thus, we assume that the
gait adjusts to changes in the stride period much faster than
the rate at which the stride period is updated.

As described in section 3.1, the time delay d(T) is approxi-
mately constant for short stride periods (when deactivation
causes loss of contact with the ground), and monotonically
increases at a nearly constant rate for longer stride periods
(when maximum extension of the leg causes loss of con-
tact). Thus, the time delay d(T) can be well modeled as a
piece-wise linear function:

(B.2)

where b is the baseline value of the time delay for short
stride periods, s is the slope of the time delay function for
higher stride periods, and Tc is the stride period at which this
change in slope occurs. As stated, the adaptation law seeks
to converge the current stride period to Tc, which indicates
that maximum work is being performed by the actuators but
which may vary according to changing conditions.

Ideally, t is chosen to be slightly greater than b, such that
the adaptation law converges to an equilibrium when
d(T)=t, which occurs when T=Tc+(t-b)/s. If t is chosen
appropriately close to b, this will occur near Tc, as illustrated
in Figure 10. We first show that the following condition:

(B.3)

is a necessary and sufficient condition for convergence of
the adaptation law, assuming that t>b and s>0. To do so, we
first consider starting conditions of the stride period, T, that
lie within the range Tc>T>Tc+2(t-b)/s, that is, a range

whose center is the point where d(T)=t and bounded such
that d(T) is a smooth sloped line in this range. For this range,
combining Equations B.1 and B.2 results in:

(B.4)

(B.5)

This one-dimensional discrete system is asymptotically sta-
ble if:

(B.6)

Assuming both K and s are always positive, this condition
becomes:

(B.7)

Thus, any starting point of T within this range will converge
asymptotically to a single value, as long as K is chosen such
that K<2/s. To demonstrate global convergence, we now
show that any starting point outside this range eventually
becomes a value inside the range.

For T<Tc, the function d(T) is a constant value b, and
Equation B.1 becomes:

(B.8)

Since t>b and if K<2/s, it can be shown that for T<Tc, T
will increase in fixed step sizes until it falls within the range
Tc>T>Tc+2(t-b)/s, thus leading to convergence as shown
above.

For T>Tc+2(t-b)/s, Equation B.1 becomes Equation B.4,
and since d(T)>t in this range, it can be shown that T will
decrease with finite step sizes until it falls either in the range
T<Tc or Tc<T<Tc+2(t-b)/s, again leading to convergence.

For K>2/s, the equilibrium point T=Tc+(t-b)/s becomes
unstable, such that any starting point within the range
Tc>T>Tc+2(t-b)/s eventually leaves the range. In this case,
it can be shown that a limit cycle exists in which T alternates
between the following two values:

(B.9)

(B.10)

However, this limit cycle can be shown to be locally
unstable for K<2/s, which is a condition on its existence.
Although the limit cycle is unstable, it can be shown that the
stride period will oscillate about this limit cycle, but stay
bounded in steady-state by the following two values:

(B.11)

(B.12)
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Index to Multimedia Extensions

Extension Media Type Description

1 video Video showing "Sprawlita" 
running despite large distur-
bances. This disturbance 
rejection is accomplished 
without sensory feedback 
through the robot's passive 
properties and open-loop con-
trol.

2 video Video showing "Sprawlita" 
overcoming hip-height obsta-
cles.

3 video Video showing sample results 
of implementing the adapta-
tion strategy based on binary 
contact information from a 
switch in one the robot's feet. 
The video shows experiments 
on flat ground in which the 
robot's stride period was 
started at suboptimal values.

4 video Video sample results of the 
adaptation strategy on an 
uphill slope of 5 degrees. The 
video shows experiments in 
which the robot's stride period 
was started at suboptimal val-
ues.


