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Abstract

In this paper we present an approach to event
detection during a dextrous manipulation task. The
approach utilizes a combination of tactile sensors as well
as contextual information. The manipulation task is
decomposed into distinct phases, each of which is
associated with a limited number of feasible events such
as making or breaking contact, slipping, etc. A set of
context-based and sensor-based features is associated
with each possible event for each type of manipulation
phase. The goal is to detect events as reliably and as
rapidly as possible. At any time during a task, each
possible event is assigned a confidence value between 0
and 1. This indicates how confident the detection scheme
is that a given event could be occurring at that instant. A
high-level controller can then make use of thisinformation
to determine when to switch to a different manipulation
phase.

1. Introduction

Dextrous manipulation with a robotic hand is a
complex process interspersed with events, control
discontinuities and phase changes. For example, as the
fingers close upon an object they are driven using position
control, but when manipulating an object they are driven
to maintain control of internal forces. In this example, the
sensation of contact is an event that signals the transition
from one control regime to the next.

Recently, there have been severa efforts in the
robotics literature to develop control systems for dextrous
manipulation that consist of a series of phases, such as
independent finger motion, coordinated motion, object
impedance control, etc. [Cut93]. Each phase contains its
own control law, controller gains, trajectories, and so
forth. The transition from one phase to another is triggered
by events which can be either expected or unexpected. A
high-level controller then selects an appropriate
subsequent phase based on the detected event. Using

phase-based control, a complex manipulation task can be
broken into distinct phases, making the manipulation
process more tractable. However, robust event detection is
clearly essential in a phase-based control approach.

When the signals from several types of sensors must
be integrated, we are faced with the problem of data
fusion. In rabotics there has been much research done on
data fusion but most of it has concentrated on vision rather
than tactile sensing. A variety of approaches have been
presented in the literature, including Bayesian methods
[Bec92], Dempster-Shafer Theory [Gar81], Artificial
Neural Networks [Mar89] and Team Decision Theory
[Dur88] to name a few.

While much work has been done on devel oping tactile
sensors that detect specific events, little has been done on
developing strategies to detect a variety of events and/or
properties using multiple sensors. One exception is the
work done by Eberman and Salisbury [Ebe94] who
examined the signatures obtained from fingertip
force/torque sensors during manipulation. Their research
looked at labeling some simple events without context
using a combination of signal processing methods and
sequential hypothesis testing based on statistical analysis
of the properties of the signals. Incorporating contextual
information is also an area that has not been researched
extensively. Brock [Bro93] has addressed the inclusion of
contextual information into a control framework. Most of
his work focused on “high level” context such as
knowledge of the environment and the relationships
among objects but the approach can also be extended to
encompass “low level” context, such as the awareness of
one's own behavior.

To summarize, there has been a considerable work on
developing tactile sensors, less work on fusing multiple
tactile sensors and little done on developing sensing
strategies for detecting multiple events during atask. Also,
little has been done to incorporate context into sensing
strategies. Our goal is to develop a genera approach for
event detection that incorporates multiple sensors and an
awareness of the robot's actions (context).



2. Theoretical Framework

In our multi-sensor scheme, any given sensor can
provide severa types of information. For example, tip
position, velocity and acceleration can be computed from
joint sensor data and short-time energy can be obtained
from skin acceleration sensor data. We refer to each of
these types of information as sensor-based features. When
contextual information about the robot's behavior is
included as a feature (desired velocity for example) we
refer to these features as context-based features. These
features can be combined in away that lets the controller
determine how confident it is at any given instant that one
of alist of possible events could be occurring. Each event
is assigned a value between 0 and 1 that determines how
confident the controller is that the event might have
occurred. This is achieved with the use of confidence
distribution functions. Another area where context is
included is at the phase-level, where the robot only
considers the events that are possible during a given phase
and ignores the rest. This phase-level implementation of
context is important because it reduces the list of possible
events and minimizes the chance of detecting the wrong
event. This section will introduce the feature space
approach to event detection. The concept of a phase's
feature space and its accompanying event subspaces will
be discussed. As mentioned earlier, context is
implemented at two levels in our approach: at the phase
level and at the feature level.

2.1 Feature Space and Event Subspaces

For each phase in a manipulation task, if one
identifies the possible events and the features required to
detect them, one can construct a feature space for the
phase. Let us define a feature F as a set of discrete real
numbers f corresponding to all possible values for that
feature and let ® be the current phase of a manipulation
task. Now let us define an n-dimensiona Euclidean feature
space corresponding to the cartesian product of the family
of sets, or observed features, and denoted by
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At any given moment during the phase, there will be an
n-tuple (f,,f,,...,f,) which corresponds to the current feature
values and defines a position in the n-dimensional feature
space.

Inside this feature space, there will be m regions ¢
which correspond to the p possible events which can occur
during the phase. Let
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be the set of g-dimensiona event subspaces associated
with the phase ®. Note that ¢, <n which means that the

Figure 1: Example of a 2-D feature space.

dimension of the event subspaces might be of lesser or
equal dimension than the feature space. In other words, the
detection of each event is not necessarily dependant on all
n features. Also note that p<m because an event may
occupy more than one distinct region in the feature space.
Thus,
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where k corresponds to the number of regions & associated
with each event e. The sum of all the k, will be equal tom.
Therefore, if we define an n-tuple in the n-dimensional
feature space of a given phase as

fo = (f ) @

It then follows that the condition
n p
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must be satisfied for an event to have possibly occurred.
Note that this does not mean that an event has definitively
occurred but rather that the n-tuple will be assigned a
confidence value in the interva [0,1] based on its
proximity to the subspace’s centroid or some other criteria.
It is then up to the controller to determine if an event has
occurred or not. This will be discussed in further detail
later in this section.

To illustrate this terminology, consider a simple
two-dimensional feature space for a given phase, as
illustrated in Figure 1. In this example, there are four
possible events whose typical feature distributions are



indicated by the shaded areas. At any instant during the
phase, the current values of the 2 features (i.e. the 2-tuple
fi) define a position in the feature space. If this position
falls within the boundaries of one of the event subspaces,
it is possible that an event might have occurred and a
confidence value is assigned. Note that event #3, or e%, is
only dependant on feature F; to be detected, therefore it
has a one-dimensional subspace which explains the
superscript of 1. Obvioudly, in order to eliminate
ambiguity it is desirable, if possible, to define a feature
space with mutually exclusive event subspaces such that

P q

Nne =0 (6)

i=1

2.2 Incorporating Contextual Information

Making use of context while performing event
detection greatly reduces the chances of making erroneous
decisions during a manipulation task. Generally, most
attempts to include context include it as what we term
“high-level context”. This high-level context is mostly
concerned with knowledge of the environment and how it
affects the robot’s behavior. In our approach, we wish to
implement context on a lower level. Our definition of
context is information that makes the robot aware of its
own behavior. To achieve this, we implement context in
two areas:. at the phase level and at the feature level.

Phase-L evel Context:

At any given instant during atask, only a subset of all
the possible events for that task can reasonably occur.
Therefore, our goal isto determine the sets of possible and
likely events for each phase of typical manipulation tasks
and thus reduce the set of events that are looked for. This
use of context at the phase level reduces the set of feasible
events for each phase and thereby both increases the
robustness of the approach and decreases the computation
time required for event detection.

Let us define the set of all t possible events during a
task T as

E! = {e,€,...6} @
As stated earlier, each phase @ will haveits own subset of
p possible events:

Ep = {e, e, ...e} ®)

Therefore, in order to make good use of context at the
phase level, it is our goal to make p<<t for each phase of
the task. For example, if the fingers are moving without
holding an object, there is obviously no point in checking
for object slippage or object contact with the environment.
This simple and intuitive way of implementing contextual

information is especially well suited to a phase-based
strategic control law.

Feature-L evel Context:

As stated earlier, features can be either sensor-based
or context-based and our second implementation of
context is at the feature level. When constructing the
feature space for a phase, it is possible to make the robot
aware of its actions by incorporating features that are not
sensor-based but rather behavior-based. For example, take
the case where a robot suddenly accelerates. If the
controller has a simple contact detection scheme that waits
for the force sensor signal to exceed a certain threshold,
then it would be fooled by this sudden acceleration
because the fingertip has non-negligible mass and this
inertia will cause an increase in the force reading. In this
case it would be possible to include desired acceleration as
one of the features for that phase and thus not misinterpret
the sudden acceleration as a contact.

Consider a multi-sensor robotic hand  system
comprising a set of tactile sensors. There are k
sensor-based features that can be extracted from said
sensors during a given phase:
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Now let us consider the behavioral information

available to the robot during a given phase based on its

knowledge of its own actions, for example, desired

velocity, direction of travel, etc. Thisinformation can also
be represented as a set of features

0° = {Fy,Fyp ....Fy (10)

where v corresponds to the total number of context-based
features used for that phase. Now if we combine the
information obtained from the sensor-based features in
Equation 11 with that which is obtained from the context
based features in Equation 12, we obtain a more complete
definition of the feature space, based on Equation 1, as
follows:

xE xF, % ...F (1)
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where there are k sensor-based features represented by F
and v (or n-k) context-based features represented by F.

2.3 Assigning Confidence

Once al the required features have been computed,
the controller has to decide whether an event has occurred
or not. For this purpose we desire a efficient way of
assigning a confidence value to each event at any time
during a phase. By observing these continuously varying
confidences, the controller can then make decisions
relating to event occurrence. We make use of confidence
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Figure 2: Four types of CDFs used.

distribution functions to assign a confidence value to a
given feature measurement. One of the advantages of
using a distribution function to describe a feature is that it
is essentidly a dimensionless scalar quantity. This
provides data abstraction and alows the techniques
developed here to be applied to al types of features
regardless of what their units or value ranges are.

Recall from section 2.1 that we define a feature F as
the set of discrete real numbers f corresponding to al
possible values for that feature. Now let us define a
confidence distribution function  (f) for that feature as

g(f) : F- [01] (12)
That is, the c.d.f. isarea number
osys<1 (13

where 0 means that from that feature's point of view, the
event could not possibly have occurred. A value of 1 on
the other hand means that from that feature's point of
view, all its requirements have been met and it is satisfied
that the event could have occurred. In other words, avalue
of 1 does not mean that an event has occurred, but rather
that this particular requirement (perhaps one of many for
the event) has been met. Any value between 0 and 1
indicates the level of confidence that the feature value has
for a particular event. For our approach, we have selected
four different types of confidence distribution functions
which are used based on feature characteristics. These
functions are similar to the membership functions used in
fuzzy set theory. They include a sigmoidal function X, a
bell-shaped function M, a flat-bell function A and a
binary function I . They areillustrated in Figure 2.

Once confidence values have been obtained for each
feature, they need to be combined in order to get an overall
confidence value for a specific event. Whereas the
sensor-based features are typically uncertain and noisy, the
context-based features represent current knowledge and
serve mainly to rule out certain events. Therefore, the
overall confidence for an event consists of the weighted
sum of the confidences of the sensor-based features (some
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Figure 3: Fingertip

might have more relevance than others) multiplied by
confidence values for each of the context based features.
This means that a single context-based feature (firm
knowledge) has the ability to nullify or significantly
influence the overall confidence value while a
sensor-based feature's influence is limited to the weight
accorded to it. Let the overall confidence W that an event
€ isoccurring at sampling period k be defined as

f am ~ O an
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where m corresponds to the number of context-based
features, n corresponds to the number of sensor-based

features, W, is the weight assigned to a sensor-based

confidence values and Y isthe cdf of agiven feature. Note
that the same feature will have different c.d.f.’s depending
on which event is being considered.

3. Experiments

The robot used for these experiments consists of a
2-DOF planar manipulator with a tactile sensor equipped
fingertip mounted on the end (Figure 3). This set-up has
been described in detail in [Tre93] minus the stress-rate
sensor which is described in [Son94]. The fingertip is
made of a soft hemicylindrical foam core which is covered
by a thin layer of textured rubber skin. The system
incorporates four types of sensors. position sensors, force
sensors, skin accel eration sensors and stress-rate sensors.

We conducted a series of tests of the event detection
scheme described in the preceding section on the first
stage of a manipulation task in which the fingers approach
and make contact with an object. This phase was chosen
becauseit is present in almost all manipulation tasks and it
is a phase for which it would be easy to fool a primitive
event detection scheme. In this phase, we consider four
types of events that cause sensor excitation and thus have
the ability to trigger a reaction, desired or not, by the
robot. One of these events is associated with finger



contact hard object high speed (8 cm/s)
medium speed (5cm/s)
low speed (2 cm/s)
high speed (8 cm/s)
medium speed (5 cm/s)
low speed (2 cm/s)
object moves |medium speed (5 cm/s)
high speed (8 cm/s)
low speed (2 cm/s)
disturbance |large medium speed (5 cm/s)
small medium speed (5 cm/s)
from standstill

while moving (5 cm/s)

soft object

link collision

sudden
acceleration

Table 1: Data Runs

acceleration, the remaining three involve interactions with
the environment (fingertip contacts, link collisions and
unknown disturbances). In this example the desired
termina event is fingertip contact with the object, which
triggers the onset of the next phase. Link collisions would
aso trigger a new phase (typically a retreat to a safe
place).

To help us assess the robustness of the approach,
multiple tests were conducted over a range of finger
velocities and with avariety of events as shown in Table 1.

3.1 Context-Based Features

Desired Acceleration: This feature is included to help
reject any sensor excitation caused by a sudden accelera
tion of the manipulator. This feature has a bell c.d.f cen-
tered around zero.

Force-Velocity Dot Product: This is a useful feature for
determining contact, since one of the conditions for
contact is

F<0 (15)

or elsetheincrease in the force signal is probably dueto a
link collision or a disturbance. This feature has a binary
distribution function.

Desired Tip Velocity: For contacts or collisions to occur,
the finger has to be moving (assuming al objects are
stationary):

N

V%0 (16)

d
3.2 Sensor-Based Features
Tip Position Error: Used because it will increase for

contacts and collisions but remain largely unaffected for
disturbances.

Filtered Force Signal: When contact occurs, the measured
force will increase gradualy. For link collisions and
disturbances, the fingertip will behave as a standard
second order system and the force readings will oscillate
about zero because the fingertip is not in contact with
anything.

STE of SAS: The short-time energy of the skin accelera
tion sensor signal is defined as follows:

N-1
Z,= 3 X’ (n-m) th(m) (17)

m=0

where X is the sensor reading and h represents a sampling
window (filter) of size N. Thisis a useful feature because
the various events have very different STE ranges.

Skin Stress-Rate: The stress-rate sensor is quite insensitive
to non-contact events and is therefore well suited for
distinguishing between contacts and other events such as
collisions and disturbances.

3.3 Results

As stated earlier, the overall confidence value for each
monitored event (contact, disturbance and link collision)
was computed for avariety of runs. In all of our test cases,
the scheme quickly identified the correct event. Figure 4
shows the results for 4 typical runs where the overal
confidence for each event is displayed as a function of
time. Confidence results for contacts with hard objects at
high speeds and soft objects at low speeds are displayed,
as well as results for a vibration disturbance and a link
collision. For all plots, the actual event occurs at t = 20ms
and one can see that in every case the correct event is
detected within 20ms and sometimesin less than 10ms.

4. Conclusions

Our goal when approaching this problem was to come
up with a general approach to event detection in dextrous
manipulation that incorporates multiple sensors and an
awareness of the robot's commanded actions (a ssmple
form of context). Our initia results indicate that these
goals can be achieved. We have developed a scheme that
rapidly and reliably detects typical events present in a
manipulation phase. This scheme assigns a confidence
value (0-1) to each possible event in a phase and the
controller can use this information to determine if any of
these events has occurred. To determine the confidence for
each event, a feature space is constructed based on all the
data features used to detect the events. Each feature is
assigned a confidence distribution function. By knowing
the value of each feature at any given instant, and its
corresponding confidence value, it is possible to compute
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Figure 4: Sample Experimental Results

an overal confidence for the observed event. Once a
robotic controller is informed of these confidence values,
it can then determine when it should transition from one
mani pulation phase to another.

One advantage of this method is that, unlike other
approaches like Bayesian methods or Neural Networks, it
does not require extensive training. Instead, one is
required to determine the limits for each feature for each
type of event instead of training over the whole range of
the feature.

A number of extensions to this approach are evident.
It should be extended to other manipulation phases and we
need to formalize our feature selection process. Also,
event independence in the feature space needs to be
studied further.
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