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Abstract

Haptic exploration is a key mechanism humans use to learn about the surface prop-

erties of unknown objects. With specialized �ngers and sensors, and the appropriate

planning and control, robots can also be enabled to explore the world through touch.

Haptic exploration has applications in many areas, including planetary exploration,

undersea salvage, and other operations in remote or hazardous environments.

This thesis develops an approach for haptic exploration of unknown objects by

robotic �ngers. Because haptic exploration is coupled with manipulation, a procedure

for combined manipulation and exploration using a sequence of phases is presented.

Fingers alternately grasp and stabilize the object while other �ngers explore the

surface with rolling and sliding motions. During an exploratory phase, the goal is to

move a �ngers tactile sensors over the surface in a way that will elicit useful data.

There exist many possible objectives for haptic exploration. This work concen-

trates on the detection and identi�cation of �ne surface features. In the context of

exploration with spherical robotic �ngertips, �ne surface features and macro features

such as bumps, cracks and ridges are de�ned. Using di�erent types of sensor data,

various algorithms and experimental results for �ne feature detection are presented.

There are also many potential methods for actively exploring a feature on a surface

in three dimensions. After a feature has been encountered on a surface, tactile sen-

sor and position data may be used to determine the next direction of �nger travel,

guiding the �nger around and over the feature in a way that will eÆciently extract

surface properties. Shape skeletons are used to create a map of features and regions

on a surface.
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Chapter 1

Introduction

Haptic exploration is an important mechanism by which humans learn about the

surface properties of unknown objects. Through the sense of touch, we are able to

learn about attributes such as object shape, surface texture, sti�ness, and tempera-

ture. Although most current robotic systems are designed to operate in well-known,

structured environments, robots can explore to learn about unknown environments.

Unlike vision or audition, tactile, or haptic, exploration involves direct interaction

with the object being explored, which presents signi�cant challenges in both control

and sensing. However, recent developments in tactile sensing and dexterous manip-

ulation have made it possible for multi-�ngered robotic hands to better manipulate

and explore unknown objects.

This thesis develops an approach for haptic exploration of unknown objects with

robotic �ngers. Exploration and manipulation are inherently coupled, as shown in

Figure 1.1. In order to manipulate an object, some information about the object

properties and position/orientation must be known. The more that is known about

an object, the more manipulation can be planned in advance. In cases where complete

object information is not readily available, exploration must be performed to learn

about the object's properties, or, given a known shape, the object's pose. In addition,

manipulation is necessary for thorough exploration. While portions of a �xtured

object may be explored without manipulation, it is often desired to explore all the

surfaces of an object. Robotic �ngers have limited workspaces, so holding an object

stationary during exploration is of limited value. Rather, manipulation is used to

move the object into appropriate poses for exploration by multiple �ngers.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Exploration and manipulation are necessarily coupled during the explo-
ration of unknown or partially known objects.

Because haptic exploration is coupled with manipulation, a procedure for com-

bined manipulation and exploration using a sequence of phases is presented in this

thesis. Fingers alternately grasp and stabilize the object while other �ngers explore

the surface with rolling and sliding motions. During an exploratory phase, a hybrid

force/velocity control law is used to keep an exploring �nger in rolling or sliding con-

tact, moving the �ngers tactile sensors over the surface in a way that will elicit useful

data.

Humans perform a variety of speci�c exploratory procedures when attempting to

learn about object properties. Psychophysicists Klatzky and Lederman[41] mapped

human hand motions to object properties such as texture, hardness, temperature,

weight, and shape. Figure 1.2 shows a number of these exploratory procedures. Thus,

there exist many possible objectives for haptic exploration. This thesis concentrates

on the detection and identi�cation of �ne surface features.

In the context of exploration with spherical robotic �ngertips, curvature features

are de�ned as areas where the local object surface curvature is greater than that of

the �ngertip. Patterns of negative and positive curvature features are then used to

de�ne macro features, such as bumps, cracks and ridges. Based on di�erent types of

sensor data, such as contact location, surface normal direction and �ngertip-center
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Figure 1.2: Klatzky and Lederman demonstrated that humans use a number of ex-
ploratory procedures (EPs) to determine unknown object properties. (Adapted from
[41].)
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position, various algorithms and experimental results for �ne feature detection are

presented. The �nal subject considered in this thesis is active exploration of surface

features. With a three-degree-of-freedom robotic �nger, there exist many possible

methods for exploring a feature. After a feature has been encountered on a surface,

tactile sensor and position data may be used to determine the next direction of �nger

travel, guiding the �nger around and over the feature in a way that will eÆciently

extract surface properties.

Haptic exploration has applications in areas such as planetary exploration, under-

sea salvage, and other operations in remote or hazardous environments. Autonomous

detection and identi�cation of features allow for the development of realistic ob-

ject models based on tactile data, which can then be displayed with virtual reality

systems. These object models will be especially useful in creating realistic haptic

displays, where human operators can explore models of actual surfaces obtained by

remote robotic exploration.

1.1 Motivation and Challenges

1.1.1 Motivation

The primary motivation for this work is the development of object models from

haptic exploration with robotic �ngers. One use for such a model is to provide

information for reality-based modeling systems. Reality-based modeling uses physical

measurements to develop models for analysis or virtual reality displays. Taking these

physical measurements is a particular challenge in remote or hazardous environments.

In such an environment, a reality-based modeling system requires some autonomous

or semi-autonomous device to obtain data. Robot �ngers provide this ability, as well

as the exibility and dexterity to handle objects. Related applications include remote

planetary exploration, undersea work, and operations in hazardous environments.

In addition, there are some tasks that are simply performed better by autonomous

systems than by humans. While a person may have the ability to explore an unknown

surface more completely and robustly than a robot, it is diÆcult to make a map based

on human description. A robot can accurately measure points and store contact in-

formation automatically. For example, computer-numerically-controlled coordinate

measuring machines (CNC CMMs) are used to make accurate measurements of sur-

faces for the purposes of component inspection or quality control. Such a machine
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can accurately detect dimensional aws with computerized data processing.

Another motivation is the general enhancement of robotic hands, in order to em-

ulate the human capabilities of touch and manipulation. While robots and humans

have di�ering strengths (i.e., robots may be designed to have very good propriocep-

tion, while humans have excellent tactile sensing), the diversity of tasks that humans

can accomplish with their hands has been an inspiration for robotics. Humans can

quickly manipulate and explore an object in order to identify many object properties,

even without visual feedback. Through research in control, dexterous manipulation,

computer vision, and haptic exploration, robots are being improved to emulate this

ability.

1.1.2 Challenges

The general goal for haptic exploration is to have a robotic hand explore an object

through the sense of touch in order to determine object properties. It is necessary to

create some order from this vague problem statement. The problem can be divided

into several sub-problems, each of which presents particular challenges.

� Manipulation and Exploration. The theory for robust manipulation and grasp-

ing has been extensively researched in previous work. However, active explo-

ration, that uses tactile data and extracts object properties to change explo-

ration and manipulation strategies, has not yet been achieved.

� Surface Properties. There are many object properties that can be detected,

including geometry, mass, sti�ness, reectivity, acoustic characteristics, and

texture. In order to program a robot to explore, there must be a goal to �nd

speci�c properties. Each property must be de�ned in order to provide a robot

with instructions for data collection. The data collection technique will depend

on the type of sensing available.

� Algorithms for exploration. Exploration can be divided into two levels, local

and global. Local exploratory procedures are used to determine particular ob-

ject properties, such as texture or sti�ness. Global exploratory procedures are

methods for exploring the entire surface. If the goal is to explore the whole

object, the algorithm must make sure that no area will be missed. If the goal

is to �nd a particular feature, the algorithm must be able to �nd that feature

and obtain suÆcient information to identify it.
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� Data Storage and Modeling. One of the great advantages of robotic exploration

over human exploration is that data may be automatically stored for analysis or

display. EÆcient ways of storing the information about object properties must

be developed.

This thesis deals with a subset of these challenges { essentially the minimum subset

necessary to explore objects for surface feature detection. In the area of manipulation,

I developed a simple procedure that alternates manipulation and exploration. In the

area of surface properties, I de�ned the curvature feature, a geometric object property.

Algorithms for detecting and identifying these features are developed. Finally, for

data storage and modeling, I have examined the use of shape skeletons for storing

information about detected features and their locations on a surface.

1.2 Related Work

Haptic exploration builds on many �elds, including tactile sensing, dexterous manip-

ulation, and robot control. This section describes work relevant to the general area

of haptic exploration. Work related to the speci�c topics of each chapter is discussed

in that chapter.

Much of the inspiration for haptic exploration comes from the ability of humans to

explore the world through touch. As mentioned, psychophysics researchers Klatzky

and Lederman[41] have examined the human haptic exploration process with an eye

towards developing algorithms for robots. They found that humans use a number

of speci�c exploratory procedures (EPs) for determining object properties such as

temperature, texture, and shape.

For robotic exploration, a system for integrating vision and touch for object recog-

nition tasks has been developed by Allen[1, 3, 4]. In this work, he combined passive

stereo vision with active exploratory tactile sensing for the discovery of the 3D struc-

ture of objects. Vision processing provides sparse 3D data, while a robotic �nger

further explores regions of interest, particularly those that are occluded from the vi-

sual sensor. A hierarchical procedure is used to create surface and feature primitives,

which can be compared with model objects in a matching algorithm. Allen has used

several types of shape descriptions such as Coons' patches and NURBS (Non-Uniform

Rational B-Splines). Allen has also investigated mappings between exploratory pro-

cedures and shape representations[2].
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Stans�eld[85] also used a combination of vision and touch to create a robotic

perceptual system. A single �nger is used to explore an unknown object and detect

the features of an object and the relations between them. Vision is used to segment the

object and obtain position information. The features de�ned by Stans�eld di�er from

the features in this thesis in that they are de�ned primarily by the EPs used to explore

them. Intermediate-level features are surface shape, edges, corners, and semi-parts,

and high-level features are extent, contour, surface patch, and feature part. Thus,

Stans�eld's feature de�nitions are much broader and are not described by speci�c

de�nitions based on surface and �ngertip geometry. The major issues addressed

in Stan�eld's work are the structure of a perceptual system and the de�nitions of

primitives, features, and representations extracted and created by the system. The

system was implemented using a tactile array, a force/torque sensor, a PUMA robot

arm, and a pair of CCD cameras.

Hemami and collaborators[31] have developed a conceptual framework for tactu-

ally guided exploration and shape perception. Their framework identi�es the neces-

sary sensory information, spatial and temporal transformations of this information,

and control mechanisms. They have also investigated hybrid control and learning

controllers for moving a robotic �nger over globally unknown objects[70, 6, 26]. The

low-level hybrid control law used in this thesis for moving a robotic �nger over a

surface is similar to that in Hemami's work.

Another area related to haptic exploration is surface metrology. A characteriza-

tion of defect shapes on surfaces, including dimensional characteristics and types, is

provided by Whitehouse[92]. These characterizations are not precise, but do give a

general categorization of the di�erent types of defects and their appearances.

An interesting note on the previous work in this �eld is that exploration with

robotic �ngers has received little attention in the past decade. Most of the work

mentioned above was performed in the late 1980s when tactile sensing and grasp-

ing/manipulation theory was not as well developed as it is at the time of this writing

(2000). In 1988, Hemami states: \The available tactile sensors to date... are not

adequate for fast and eÆcient execution of rolling and gliding manipulations." Com-

bined manipulation and exploration was an especially formidable task with the lack

of technology in this area. The work presented in this thesis shows that haptic explo-

ration is feasible, given improvements in tactile sensing, robot �nger hardware, and

algorithms for manipulation and exploration.
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1.3 Contributions

The major contributions of this thesis are:

� A procedure for combined manipulation and exploration of an unknown object.

� A de�nition of features in the context of haptic exploration with robotic �ngers.

� Algorithms for performing feature-guided exploration for the detection and iden-

ti�cation of features with robotic �ngers in three dimensions.

� Algorithms for using shape skeletons for storing feature information and global

surface mapping.

1.4 Thesis Overview

This thesis is organized into �ve chapters. Chapter 1 is this introduction; it presents

the motivations and background for this work, as well as a list of the major contri-

butions.

Chapter 2 presents a procedure for combined manipulation and exploration with

a multi-�ngered robotic hand. In this chapter, the rolling and sliding kinematics

necessary for planning exploration are developed. A sequence of phases is used to

alternately manipulate and explore. Three distinct phases are used during manipu-

lation, with transitions between phases triggered by either force closure or workspace

constraints. Simulated and experimental results using this framework are shown for

a planar robotic hand consisting of two �ngers and a passive \palm."

Chapter 3 discusses the details of using haptic exploration to identify surface

features. De�nitions of features and macro features are given for the context of ex-

ploration with robotic �ngers. Various algorithms are presented for feature detection,

using tactile and position sensors. Experimental results are presented for the use of

a single �nger to �nd features.

Chapter 4 explores the idea of feature-based exploration, whereby the initial de-

tection of a feature leads a robotic �nger to change its path in order to more eÆciently

extract feature properties. A control system for implementing exploratory procedures

with a three-degree-of-freedom �nger is presented. In addition, shape skeletons are

presented as a method for storing feature information and providing a global map of

features, to be used in exploration planning.
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Finally, Chapter 5 summarizes the results of the research and o�ers suggestions

for future work.

This thesis also contains three appendices: the �rst introduces a di�erential ge-

ometry description of surfaces and contact kinematics, the second explains smoothing

algorithms used for interpreting tactile sensor data for feature detection, and the third

describes the testbed (robotic �nger and tactile sensor) used for exploration in 3D.



Chapter 2

A Procedure for Multi�ngered

Exploration

A distinguishing characteristic of haptic exploration is that it is coupled with ma-

nipulation. Haptic sensing provides us with information, such as object weight and

surface friction, needed for stable manipulation, and manipulation lets us explore an

entire surface with our �ngertips. In addition, control of the sensors' contact force,

position, and orientation are required. Thus, precise manipulation control is a pre-

requisite for tactile exploration. Studies with human subjects have also underscored

the coupling between manipulation and sensing; a combination of e�erent (active

sensing) and a�erent (passive sensing) activity helps us integrate the information we

obtain[41].

In this Chapter, I present an approach for haptic exploration of unknown objects

with a multi�ngered robotic hand. The emphasis is on developing a robust manipu-

lation process that allows a �nger to traverse the surface of an object. The process

consists of a sequence of phases in which some �ngers are responsible for grasping

and manipulating an object while others roll and slide over the object's surface. This

procedure allows the rolling and sliding �ngers to utilize sensors for detecting and

identifying small surface features such as grooves and ridges. This approach builds

on recent developments in several areas, including event-driven control of robotic

hands, motion planning with rolling and sliding, and sensor integration. Simulations

and experiments with a two-�ngered hand with a planar palm were conducted to

investigate the robustness of the approach for exploring various object shapes.

The basic approach is as follows: exploration proceeds as a sequence of phases in

10
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Figure 2.1: Combined manipulation and exploration of an object using multiple �n-
gers.

which a subset of the �ngertips is used to stabilize and reorient the object while the

remaining �ngertips roll or slide over the surface in search of both surface information

and suitable contact locations for manipulating the object in the next phase. The �n-

gertips can employ a combination of static and dynamic sensors to determine surface

properties and locate features. The reader can con�rm that humans take essentially

the same approach when manipulating and exploring a small object (Figure 2.1):

... part of the hand typically stabilizes and part explores. For example,

the �ngers may hold the object while it is surveyed by the thumb.[41]

In the following sections, I �rst review the related literature, including the main

technologies on which this work builds. Then, the exploration algorithm is presented.

In this thesis, the conceptual approach described above is specialized to the simplest

case: manipulation with two �ngers and a palm, as shown in Figure 2.2. In this case,

a modest set of states and transitions results. However, this minimal con�guration is

suÆcient for exploring problems associated with ensuring robust and smooth explo-

ration of arbitrary objects. These issues are discussed in the context of simulations

and experiments for round and polygonal objects manipulated with a two-�ngered

hand.
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Figure 2.2: Two robotic �ngers and an object with haptic features.

2.1 Related Work

The relevant literature includes investigations of tactile sensing and dexterous ma-

nipulation for robots and telemanipulators.

Tactile sensing is essential for robust dexterous manipulation, especially when the

shape of the object to be manipulated is unknown. Theoretical work on grasping and

manipulation with robotic �ngers shows that contact location a�ects grasp stability

and the mapping between a �nger and an object[19, 40, 54]. In addition, a signi�cant

research e�ort has been directed towards the analysis of how contact locations move

during manipulation[18, 57].

Surveys of tactile sensing can be found in [29, 34, 62]. Tactile sensing technology

is divided into two main categories: intrinsic sensors (i.e., force-torque sensors) that

infer contact location based on global measurements and extrinsic sensors (i.e., array

sensors) that obtain contact location from a localized sensor at the contact point[82].

Nicolson and Fearing[63] consider the accuracy limits that can be obtained with array

sensors. Son, et al.[82] compare methods for obtaining contact point location with

tactile arrays and intrinsic force/torque sensors. Zhang, et al.[94] compare methods

for obtaining object curvature from tactile sensors during manipulation.

Studies of human haptic perception reveal that edge or contour following is one

of a set of common \exploratory procedures" that people use for determining object
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geometry[41]. A number of investigators, including [5, 8, 15, 60, 70, 72], have devel-

oped robotic edge tracking algorithms for use with tactile sensors. Dario, et al.[20]

describe algorithms for palpation. Others, including Allen[1] and Caselli, et al.[13],

have developed exploratory strategies for determining object geometry with haptic

sensing. However, most of this work focuses on using a minimal set of contacts to

determine overall geometry rather than on moving the tactile sensors over the surface

in order to discern �ne surface features or properties such as texture or coeÆcient of

friction.

A large body of work exists regarding dexterous manipulation. The relevant topics

include nonholonomic motion planning, grasp stability analysis and optimization,

�nger gaiting, and coordinated control of external and internal grasp forces. A few

notable examples are [32, 58, 74] and a survey by Shimoga[77]. Most implementations

are based upon the kinematic models of Montana[57] or Cai and Roth[12].

Maekawa, et al.[49] showed that dexterous manipulation with rolling can be ex-

ecuted using only instantaneous kinematics if a tactile sensor provides continuous

updates of the contact location. This is an advantage when manipulating and explor-

ing unknown objects. However, for motion planning, the object curvature is needed

to predict how far the �ngertips can travel before they will encounter joint-space

or grasp stability limitations, which would necessitate regrasping. Thus, there is a

tradeo� between the amount of knowledge required about the object and the eÆ-

ciency with which exploratory motions can be performed. I will return to this issue

when discussing the algorithm and results in the following sections.

In other work related to dexterous manipulation with tactile sensors, Son, et

al.[83] present results of using a tactile array sensor and intrinsic sensing to improve

the accuracy of peg-in-hole assembly using a two-�ngered hand with rolling contact.

Fearing[25] and Sarkar, et al.[74] also demonstrate manipulation with tactile sensing.

2.2 Exploratory Procedure Algorithm

2.2.1 Algorithm and States

As described, object exploration proceeds as a repeated series of phases in which some

�ngers manipulate the object while others explore the object surface. The goal of the

manipulation algorithm is to ensure complete and smooth exploration of a wide range

of object shapes.
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Figure 2.3: States and transitions of the exploratory procedure for two active �ngers
and a passive palm.

For this exploratory procedure, let us consider manipulation with two three-

degree-of-freedom �ngers and a �xed \palm," as shown in Figure 2.2. This is the

minimal con�guration for our exploratory procedure: there must be at least three

possible contact points so that, during manipulation, two contacts can be used for

grasping and a third used for exploring. Two of these contacts must be able to im-

part arbitrary forces (subject to kinematic and friction limitations) to the object in

order to move it to a desired location. Thus, the third contact may be passive rather

than active. With this minimal con�guration, three distinct states can be de�ned.

Using these, a state transition diagram can be represented as a three phase cycle

(Figure 2.3).

To simplify the discussion we will assume that we start the cycle in the cooperative

motion phase (Phase 1) and rotate the object. In practice, the cycle can begin with

any phase that admits a stable grasp. To further facilitate discussion, let us consider
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a planar manipulation, and assume that it is desired to rotate the object clockwise.

In general, manipulation could proceed by rotating the object in any direction (yaw,

pitch, or roll). Considering a planar hand, we can call the two active �ngers \left"

and \right," as labeled in Figure 2.3.

In the �rst phase, the object is grasped by the two �ngers and rotated clockwise

while optionally maintaining contact with the palm. (This may be useful if the palm

is equipped with sensors.) The objectives are to reorient the object and to bring

the left �nger to a suitable location for holding the object against the palm. Grasp

stability is computed using the method of Yoshikawa and Nagai[93]; this is discussed

further in the following sections.

In the second phase, the left �nger holds the object against the palm while the

right �nger rolls and/or slides over the surface to a location that will allow it to hold

the object in the next phase. The third phase is similar to the second: the object is

held between the palm and the right �nger while the left �nger rolls and/or slides to

a location suitable for the next phase: stable cooperative two-�ngered manipulation

(Phase 1).

Motion planning for this exploratory procedure is based primarily on workspace

and grasp stability limitations. The usual ending condition of each phase occurs

when a �nger reaches a workspace limitation. However, a phase will also terminate

if the grasp is starting to become unstable. Depending on the size and shape of the

object, a phase may reach a workspace limitation before reaching a stable grasp for

the next phase. In this case, it becomes necessary to modify the sequence and bypass

the nominal next phase in an e�ort to reorient the part and obtain better contact

locations. This is shown as transition (4) in Figure 2.3.

For planar manipulation, a planar slice of the object can be completely explored

using the series of phases described above. Once the object has been rotated 360o and

the �ngers return to their original contact locations on the object, the entire surface

slice must have been traversed by the �ngertips if contact was maintained. While

complete coverage is straightforward in the planar case, this process of alternating

manipulation and exploration is appropriate for general 3D manipulation as well. In

this case, complete exploration of the object will require rotating the object about

multiple axes. One simple procedure is to perform a series of full planar explorations,

while rotating the object slightly between each one. (This results in an exploration

path similar to a high-frequency Lissajous curve.) There are other strategies that
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may be used to perform global 3D exploration, which are addressed in Chapter 4.

A Minimal Con�guration for Exploration

In this section, we will show that the selected con�guration is minimal for performing

haptic exploration.

Let us �rst consider the necessary requirements for haptic exploration. In general,

limited �nger workspaces will require that the object be manipulated in order to

do complete surface exploration. The minimal number of contacts for non-dynamic

manipulation or grasping is two. For force closure under planar motion, these �ngers

will need to provide at least two point contacts with friction. (More are needed

for general 3D motion.) While these two contacts are used to grasp the object, a

third contact can be used for exploration. In order for the exploring �nger to be

independently controlled to perform any desired local exploratory procedure, it is

necessary to have a total of three �ngers. More �ngers are not required because

alternating pairs can be used to grasp and manipulate.

We can further minimize the system by making one of the three �ngers passive. At

least two �ngers must be active to perform stable, non-slidingmanipulation. The third

�nger, however, can serve as a passive surface against which the object can pushed

for a two-contact grasp. The active �ngers must have at least two-degrees-of-freedom

in order to move the �ngertips to arbitrary positions for planar motion. Thus, the

true minimal con�guration is two two-degree-of-freedom �ngers and a passive �nger

(or \palm").

Given this three-contact con�guration, there are three states (or phases) which

correspond to the object being grasped/manipulated with a pair of contacts (since

three di�erent pairs can be created). During the phases in which one of the active

�ngers is the free �nger, exploration can be performed. This corresponds to two of

the three states. With these three phases, there are six possible transitions. As shown

in Figure 2.3, three of these transitions are equivalent to bypassing the next phase

while continuing an ordered series of phase transitions.

This minimal con�guration of two two-degree-of-freedom �ngers and a \palm" is

similar to the system considered in the experiments and simulations in this chapter,

with two di�erences. In the experiment, the active �ngers have three degrees of free-

dom, which increases the workspace and allows for independent control of contact

location. This allows for the planning of contact point motions for exploration. In
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addition, it is also useful to have soft contacts rather than point contacts for im-

proved friction during manipulation and for housing the tactile sensors used during

exploration, as shown in Figure 2.2.

Grasp Gaiting

One can consider the series of phases and transitions in this procedure as a grasp

gait. A grasp gait is a series of separate grasps used to reorient an object. In order

to develop a grasp gait for manipulating an object, the grasp map is used to observe

the set of stable grasps for a given object. Leveroni[45] constructs the grasp map by

solving numerically for contact locations that represent force-closure grasps. (Most

of the discussion in this section in based on Leveroni's work.) The grasp map for a

two-�ngered grasp is represented by points on a plot where the axes are two variables

that specify the angles of the contacts with respect to a frame attached to the object.

This is a similar concept to the contact con�guration space suggested by Chen and

Burdick[16].

Grasp maps are useful for determining whether an object can be fully explored

using the exploratory procedure developed in this chapter. By overlaying the grasp

map with a workspace map, which shows the possible contact locations on the object

based on �nger kinematics, one can �nd feasible grasps as regions that satisfy both

the grasp stability and workspace constraints. Figure 2.4 shows a sample grasp map

overlaid with a workspace map for the con�guration of two active �ngers and a passive

palm.

Leveroni observed that a rotation of the object results in a sliding of the grasp

map along a diagonal in the workspace map. With this knowledge, the problem

of �nding a gait can be posed in map space. In order to �nd a grasp gait, it is

�rst necessary to �nd points which satisfy both the grasp stability and workspace

constraints. Next, because only one �nger may be released at a given time, these

points must be connected by moves parallel to the grasp map axes. In addition,

consecutive points should be in di�erent regions of the workspace map. Otherwise,

the grasp would not switch to a di�erent pair of �ngers.

Several di�erent methods have been considered for �nding feasible grasp gaits.

Brute force search, breadth �rst search, depth �rst search, and best �rst search (using

an evaluation function to select the next node) were all tested by Leveroni, but most

of these methods were too computationally expensive and ineÆcient. Instead, she
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Figure 2.4: A circular object and the corresponding grasp map for two-�ngered grasps.
The workspace map regions corresponding to di�erent pairs of �ngers are overlaid on
the grasp map. The con�guration is two active �ngers and a passive palm, and the
coeÆcient of friction between the object and the �ngers is 1.

observed that there are some prototype gaits that can be slightly modi�ed to �t

di�erent objects. One of the basic prototype gaits de�ned, the \forward gate," is

similar to the series of phases and transitions in this chapter. While Leveroni does

not consider that the �ngers may be exploring, rather than simply detaching from

the object while the other �ngers are grasping or manipulating, the concept is the

same.

Using grasp gait analysis, one can determine what object shapes and sizes can be

successfully explored given a particular robotic hand con�guration. In general, grasp

gait planning will not be feasible because the object shape is not known in advance;

a grasp map cannot be constructed without a priori knowledge of shape. However,

the grasp and workspace maps could be used to plan detailed explorations based on a

rough initial exploration that tests the ability of a hand system to perform complete

explorations of di�erent object shapes.

2.2.2 Phase 1 - Cooperative Manipulation

During phase 1, the cooperative manipulation phase, the motion planning and control

variables are the object position and orientation and the distance that each contact
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Figure 2.5: Common contact types and their associated forces/moments.

moves over the object surface. The object is rotated as far as possible, subject to

�nger workspace and grasp stability limits. Trajectory planning is done assuming

pure rolling with point contact. This is an idealization since the �ngertips are soft

and have a distributed contact patch. However, as shown by Chang and Cutkosky

[14], the deviations in rolling distances are negligible if contact forces are light.

Motion Planning

The general kinematics of contact is developed in Appendix A. The kinematics yields

a set of equations that relate the relative motion of two bodies in point contact to

the motion of the contact points on the bodies. These equations can be simpli�ed

for particular cases. We will consider planar contact with friction; this situation

matches the experimental apparatus used to develop a procedure for exploration and

manipulation with rolling and sliding.

First, let us examine the di�erent types of contact and the friction constraints.

There are three main contact types to consider, as shown in Figure 2.5: frictionless

point contact, point contact with friction, and soft-�nger contact.

In order for prevent sliding between two bodies, two friction constraints must be

met:

ftx
2 + fty

2 � c1fn
2 (2.1)

g(ftx; fty; mz) � c2fn; (2.2)

where ftx and fty are the applied force components in orthogonal directions tangential

to the surfaces at the point of contact, fn is the applied normal force between the two

objects, mz is the applied moment about an axis normal the to the surfaces, and c1 and

c2 are constants related to the coeÆcient of friction for the two materials considered.
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Figure 2.6: The friction cone is a geometric description of the point contact friction
constraint.

Maintain contact vz = 0
No sliding vx = 0, vy = 0
No spin !z = 0

Planar rolling !x = 0

Table 2.1: Contact velocity constraints for pure rolling in the x� z plane.

Equation 2.1 describes the point contact friction constraint. Figure 2.6 illustrates

the friction cone resulting from point contacts. Equation 2.2 is an analogous relation

for soft �nger contacts where the component mz exists. The function g relating ftx,

fty, and mz to fn (a friction limit surface) was developed by Kao and Cutkosky[38].

Sliding and friction constraints are also addressed by Howe and Cutkosky[36] and

Cole, et al.[18].

For pure rolling in a plane, the constraints on the relative motions between two

objects are shown in Table 2.1. The plane considered is the x-z plane, and the contact

is assumed at a point where the relative translational velocities are vx, vy, and vz,

and the relative angular velocities are !x, !y, and !z.

We will consider a case that matches our experimental setup: soft �nger contact

with friction. The contact force is high enough that the three-dimensional friction

constraint (Equation 2.2) is satis�ed. In this case, the spin _ must be zero. Thus,

the contact equations developed in Appendix A, Equation A.12 reduce to:

_u1 = M1
�1(K1 + ~K2)

�1

2
4 �!y

0

3
5 (2.3)

_u2 = M2
�1R (K1 + ~K2)

�1

2
4 �!y

0

3
5
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_ = 0

Because they are de�ned by the surface geometry and not contact motion, the

curvature matrix K, torsion form T , and metric M must remain constant, as long

as the soft �ngertip does not change its deection. In addition, R and ~K2 must be

constant because _ = 0. Thus, the equations for _u1 and _u2 reduce to a constant (C1

or C2) times the angular velocity. These equations are now holonomic.

_u1 = C1

2
4 �!y

0

3
5 (2.4)

_u2 = C2

2
4 �!y

0

3
5

_ = 0

Integrating these equations, one obtains the well-known de�nition of arclength:

s = r�. In the procedure for haptic exploration, the manipulation phase is performed

with pure, planar rolling of the �ngertips on the object. With knowledge of the local

curvature of the �ngertips and the object, rolling motions can be planned in advance

of actual exploration.

Control

During phase 1 of the exploratory procedure, control of object orientation and internal

force between the �ngers is performed using dynamic object impedance control[33, 75].

A block diagram of the total control scheme, including rolling control, is shown in

Figure 2.7. The commands are the desired body position and orientation, contact

locations on the object (or �ngers), and the internal force. These commands control

six variables that completely de�ne the grasp. The robot hand used for experimental

validation of the exploratory procedure has six-degrees-of-freedom. (There are two

�ngers with three-degrees-of-freedom each.) Thus, the number of freedoms in the

�ngers is equal to the number of grasp variables we wish to control. We will consider

each of the six input commands as a separate control problem.

The �rst control problem is the object impedance controller, used for object po-

sition and orientation. Transformations of motion and force describing this control

problem are presented by Mason and Salisbury[54] and Murray, Li and Sastry[59].
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Figure 2.7: Control block diagram including rolling feedback control.

One can transform the velocity of the joint angles of the robot (measured with en-

coders) to the velocity of the �ngertips with the Hand Jacobian, Jh.

_xc = Jh _�; (2.5)

where _xc is a vector of operational space (Cartesian) �ngertip velocities at the contact

point with the object and _� is a vector of joint velocities.

Similarly, the Grasp Jacobian, G is used to calculate the motion of the object

from the motion of the �ngers.

_xobj = GT _xc; (2.6)

where _xobj is a vector of operational space object velocities and _xc is a vector of

operational space �ngertip velocities at the contact points. These Jacobians can be

used in force/torque space as well as velocity space.

The �ngertip forces that move the object are considered to be the external forces.

These forces are calculated based on a proportional-derivative (PD) position and

velocity servo (Equation 2.7). With this impedance control, the external force applied

by the �ngertips on the object is proportional to the position error of the object. The

masses of the �ngers are also fed forward to provide inertial and gravity compensation.

F = G+M �x +Kp(xd � x) +Kv( _xd � _x) (2.7)



CHAPTER 2. A PROCEDURE FOR MULTIFINGERED EXPLORATION 23

Figure 2.8: Explicit rolling can be commanded when there are suÆcient degrees-of-
freedom in the robot hand, such as this system of two �ngers with three degrees-of-
freedom each.

The second control problem is concerned with moving the contact locations, chang-

ing where the �ngers touch the object. The rolling control law in the work was

designed to augment the traditional object impedance control law. \Contact point

sensing," shown in the block diagram in Figure 2.7, can be done using intrinsic or

extrinsic tactile sensors, or using assumptions based on �ngertip motion history if the

local object shape is known.

The type of rolling control law that can be used is highly dependent on the number

of degrees-of-freedom of the system and the application. In this thesis, we de�ne

explicit rolling as the case where one can (and desires to) specify the location of

the contact points on the object or the �ngertips independent of the object position

and orientation. This can only be accomplished when there are suÆcient degrees-of-

freedom in the robotic hand, such as in Figure 2.8.

The explicit rolling control torques are added to the general external force control

torques. The rolling control torques are calculated using a proportional-derivative

control on the contact position and velocity error. The control law is

� = Kproll(xcdes � xc) +Kvroll( _xcdes � _xc); (2.8)

where Kproll and Kvroll are the feedback gains, xcdes is the desired contact location,

and xc is the actual contact location.



CHAPTER 2. A PROCEDURE FOR MULTIFINGERED EXPLORATION 24

Figure 2.9: Model of explicit rolling during a simulation performed using Matlab.

Figure 2.10: Explicit rolling control experimental results.

Explicit rolling simulations (in Matlab, Figure 2.9) and experiments (using the

testbed in Figure 2.8) were performed to verify that the explicit rolling control law was

e�ective. A plot of commanded versus actual contact locations for the experimental

work is shown in Figure 2.10.

Implicit rolling can occur when there are not enough degrees-of-freedom to ex-

plicitly de�ne the locations of the contact points. For example, if two two-degree-

of-freedom �ngers are moving an object, the contact points must move if the object

moves, for general motions. However, even if there are suÆcient degrees of freedom to

command contact point motions, there may be reasons for not doing so. For example,

there may be parameters one would like to minimize, such as distance of the robot

�ngers from the center of the workspace or the distance of contacts from the edge of
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a square object. In this case, implicit rolling would occur as the contact locations

move due to the control scheme rather than from an explicit calculation.

The last control problem addressed in cooperative motion is the internal force on

the object. The internal force servo is a straightforward proportional-integral (PI)

control on the sensed internal force on the object. The internal force is calculated by

taking the minimum of the force sensed by each �nger along a line through the two

contact points.

2.2.3 Phases 2 and 3 - Exploration

During phases 2 and 3, the motion planning and control variables for the moving

�nger include the trajectory of the contact and the orientation of the �ngertip. The

speci�cation of the �ngertip orientation determines the amount of relative sliding

that takes place. At one extreme, the orientation can be made consistent with pure

rolling, and at the other the �ngertip orientation can be kept constant, so that the

relative motion is pure translation.

Motion Planning

In practice, the duration of each phase is mainly a function of the workspace of the

�ngers. Therefore, the �ngertip orientations (or equivalently, the amount of rolling at

each �ngertip) are planned using a simple heuristic that attempts to keep the �ngers

within their workspaces for as long as possible. The Cartesian workspace of each

�nger is divided into four regions, each of which has a \preferred" �ngertip orienta-

tion - one that maximizes the local con�guration space. As each phase is planned,

the approximate �nal position of the �nger is mapped to one of the four workspace

regions and the corresponding preferred orientation is found. The orientation is then

interpolated between the initial value and this �nal value.

The planning is done dynamically at the start of each phase, using a current

estimate of the object curvature and surface orientation. When the exploration task

is just beginning, this estimate may be poor (for example, there may be an unexpected

corner), in which case the phase will end quickly as the �nger reaches the edge of its

workspace. If the �ngertip has not moved far enough to grasp the object stably in the

next phase, the algorithm reverts to the previous phase (transition (4) in Figure 2.3).

If a stable grasp within the �nger workspace still cannot be found, the algorithm

terminates.
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Figure 2.11: Examples of (a) unstable and (b) stable two-�ngered grasps.

Grasp stability is computed using the method of Yoshikawa and Nagai[93]. A

stable grasp occurs when the grasping forces at the two contacts each lie within a

friction cone at the contact. The grasp force from each contact must lie along the

same line if there are only two contacts. The friction cone is de�ned by the limit

ft � �fn (2.9)

where ft is the total force tangential to the surfaces, fn is the total force normal to the

surfaces, and � is the coeÆcient of friction. Figure 2.11 shows examples of unstable

and stable two-�ngered grasps.

Control

In phases 2 and 3, there are two control laws in e�ect: one to grasp the object

between two contacts, and the other to move the exploring �ngertip. The grasping

control of the object is accomplished using the internal force control as described in

the previous section. Forces applied by the moving �ngertip are considered external

disturbances (which are compensated for by the integral portion of the control) and

are not explicitly accounted for in the control law.

The moving �ngertip is controlled independently using dynamic impedance control

in the tip workspace. The impedance control is similar to that used for object control

in cooperative motion, but now we specify only the impedance of one �ngertip. The

variables modi�ed in this control law are the x�z position of the contact point on the

object and the orientation of the �ngertip, completely de�ning the control problem

for a three degree-of-freedom �nger.
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Phase Transitions

Transitions from one phase to the next occur in response to events. In the case of the

exploratory procedure described in this chapter, the events are �ngers reaching the

limits of their workspaces and a computed loss of grasp stability.

Some care is needed to ensure smooth transitions that will not excite the tactile

and force sensors. For example, in the transition from phase 3 to phase 1 the control

changes from �ngertip impedance to object impedance. Smooth ramping is provided

by an explicit \startup" segment that is part of the phase de�nition. When this

startup is a change from force to position control of a �nger, a 5th order position spline

is used to command smooth positions, velocities and accelerations. The commanded

internal and external forces on the object are initially computed to be consistent with

the commanded tip forces at the end of the previous phase and gradually ramped to

their desired values for object manipulation. This phase/event/transition system is

described in[89].

2.3 Simulations and Experiments

2.3.1 Simulations

The exploratory procedure was �rst simulated numerically to determine how well

the algorithm would traverse a range of object shapes, including round and square

objects, and to test the sensitivity of the approach to workspace limits. The simulation

modeled the grasp kinematics and included forces and friction coeÆcients in testing

the grasp stability but did not include inertial terms.

Figure 2.12 shows three phases of the simulation during a clockwise rotation of a

square object. The dotted lines show the �nger positions at the start of each phase,

and the solid lines show the �nal positions (the �nal position of one phase becomes

the starting position of the next). The coeÆcient of friction between the object and

�ngertips and palm was assumed to be 1.0, a typical value for the rubber-coated

�ngertips used in subsequent experiments.

In general, the robot transitions from one stable con�guration into the next. In

some cases, rotating about a sharp corner on an object would require the simulated

right �nger to move outside of its workspace in phase 2 before reaching a stable

con�guration for phase 3. In several of these cases, the robot was able to recover by
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Figure 2.12: Simulation of an exploratory procedure. Dashed lines show the positions
of the �ngers and objects at the beginning of or during a phase, and solid lines indicate
the end of a phase.
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skipping phase 3 (transition 4 in Figure 2.3) and rotating the object with two �ngers

again.

The simulation revealed that �nger workspaces were the most serious limitation

and led to the development of the heuristic, mentioned in the previous section, for

specifying the �ngertip orientation at the end of each phase. Even so, the algorithm

cannot handle long, thin objects, relative to the shape of the �nger workspace. The

workspace and grasp stability limitations of the exploratory procedure can be pre-

dicted using the grasp and workspace maps described in Section 2.2.1.

The simulation did not account for the e�ects of noisy sensors and imperfect

control of the �ngertip trajectories and forces. These e�ects were evaluated in exper-

iments described in the next section.

This procedure works for a number of di�erent object shapes, but its success is

highly dependent on the workspace of the �ngers. By allowing some phases to skipped

when a transition will result in an unstable grasp, it is assured that any object can

be manipulated, as long as a pair of contacts can can be found within the workspace

to grasp the object stably in any orientation.

2.3.2 Experiments

The experimental test bed is a two-�ngered planar robot with a passive palm, the

minimal con�guration for multi�ngered manipulation and exploration (Figure 2.13).

Strain gauge force sensors and an 8x8 tactile array were used to collect haptic informa-

tion. Contacts can be located to within approximately 1mm using the array and forces

can be measured to an accuracy of approximately 0.02N[82]. The robot was controlled

using dynamic object impedance control[33, 75] and the phase/event/transition frame-

work of Hyde, et al.[89].

Figure 2.14 shows results obtained from the left �nger sensors, while exploring a

10cm diameter plastic ball with a ridge approximately 3mm high and 4mm wide on

its surface. The ball, shown in Figure 2.15, is manipulated clockwise so the tactile

array slides over the ridge in the \snapshots" at the top of Figure 2.14.

During the �rst 3.8 seconds (Phase 2) the right �nger slides over the object while

the left �nger holds it against the palm. The left �nger tangential force is slightly

positive, where the direction of positive tangential force corresponds to opposing the

direction of motion of the moving �nger. The tangential force is non-zero because the

�nger is grasping the ball against the external disturbance force from the right �nger's
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Figure 2.13: Marvin, the testbed robotic hand for haptic exploratory procedures.

motion. The force data reveals little noise during this phase, indicating that the right

�nger is sliding smoothly without exciting vibrations in the ball. At 3.8 seconds the

right �nger workspace limits are reached and a transition to phase 3 occurs. At this

point, the left �nger tangential force becomes negative, indicating that the tangential

force has changed directions. As the �ngertip slides over the feature the tangential

force increases and becomes subject to stick/slip vibrations.

The model of the object used for motion planning is a sphere with approximately

the same diameter as the actual ball, but with no features. Using the grasp map

described in Section 2.2.1, it can be veri�ed that it is possible to �nd a grasp gait

that can be used to fully explore this object. The normal force is controlled to remain

at approximately 0.3N but, as the plot reveals, the tangential force varies as the �nger

passes over the surface feature.

In Figure 2.14, the �rst and last tactile images show the pressure distribution

produced by contact with the plastic ball. The middle images show the presence of

the ridge. The pressure distribution near the feature becomes signi�cantly sharper

and changes from the characteristic pattern of a spherical contact to a ridge.

Speci�c to this experiment, there are several changes that could be made to en-

hance the manipulation and exploration capabilities of this robotic hand.

� The workspace of the �ngers is a main limitation. The �ngers employed in

these experiments have joint angle ranges of approximately 110Æ at each joint.

A full 180Æ range of motion would signi�cantly increase the range of sizes and

shapes that could be handled. With more �ngers, however, the motions required

of each �nger can be reduced. Another way to increase the useful workspace

of the �ngers is to change the �ngertip geometry, which changes the rolling

distance for given joint motions. The combination of one at �ngertip and one
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Figure 2.14: Tactile array and force sensor data taken during two phases of explo-
ration. The left �nger is shown grasping the object with the palm during phase 2,
then exploring the surface during phase 3.

Figure 2.15: A ball with a ridge feature.

2.5cm radius �ngertip was fairly restrictive. A tactile array that can �t over a

curved �ngertip with a small radius (i.e., 1.5cm) would be useful.

� Although the soft, rounded right �ngertip, equipped with a texture of rubber

\nibs" slid easily, the tactile array produced stick-slip vibrations, especially

when passing over features. This is not surprising because the array was de-

signed for rolling rather than sliding. Sliding diÆculties have been observed

with smooth skins in the past[35]; a new array skin design would permit eas-

ier sliding without distorting the sensor readings. It may also be possible to

suppress stick-slip vibrations through better control.
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2.4 Conclusion

The simulation and experiments con�rm our basic conviction that the state of the art

in tactile sensing and dexterous manipulation planning control are reaching the point

at which autonomous haptic exploration becomes feasible. Thus, an exploratory pro-

cedure where some �ngers hold the object while others explore is a valid paradigm.

The main advantage is that the exploring �nger does not need to contribute to grasp

stability and the disturbing forces that �nger applies to the object can be accommo-

dated as external forces on the object.

Although the results presented are for the simple case of two independently con-

trolled �ngers, the basic approach can be applied to additional �ngers and three-

dimensional exploration. The two-�ngered manipulations revealed several issues in

haptic exploration, motivating the rest of the work addressed in this thesis:

� While it is apparent that there exists some perturbation on the surface of the

object, as shown from the tactile and force data in Figure 2.14, there needs to

be a method for extracting features automatically. To accomplish this, precise

feature de�nitions and speci�c local exploratory procedures are necessary.

� In general, �nger motion will not be constrained to planar motion as was the

case in this experiment. Thus, the upcoming chapters address the de�nition of

features in 3D and methods for exploring features on 2D surfaces in 3D space.

� The purpose of the exploratory procedure is the recording of object properties,

which must be stored and identi�ed to be of use. Data from the various sensors

must be integrated into an object model. This information should be updated

during manipulation, so that the exploration can be modi�ed to explore in-

teresting features in more detail. The structure of the object model should

be simple enough that object features may readily be extracted, but exible

enough to incorporate multiple types of haptic information. The structure will

also depend on the projected use of the information, for example, whether for

played back through a haptic interface or displayed visually.

In this Chapter, we presented a procedure for haptic exploration coupled with

manipulation. Now that it has been veri�ed that combined manipulation/haptic

exploration with multiple �ngers is a viable method for obtaining surface data, we
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will turn our attention to the feature detection and identi�cation abilities of a single

�nger exploring a surface.



Chapter 3

A Feature De�nition for Haptic

Exploration

The purpose of any exploratory procedure must be de�ned in order to determine the

nature of the exploration. Without such a goal, there is no particular direction or

method to the exploratory procedure. For many applications, including reality-based

object modeling, searching for object properties, and object identi�cation, a key goal

is the detection of object features. Primarily, features are a useful way to organize the

information obtained while exploring an object. A number of investigators including

Ellis[24] and Stans�eld[85] consider features as intrinsically relevant for robotic haptic

sensing. Features can also be used to segment object data that has been obtained,

such as in registration procedures for pattern matching[56]. This chapter focuses

on a feature de�nition and detection method that is particularly suited for haptic

exploration of objects with small surface features such as bumps, ridges, and grooves.

A key question in this work is the de�nition of a feature. Brown, et al.[11], de�ne

features as \application and viewer dependent interpretations of geometry." As will

be shown, the identi�cation of a feature is not only dependent on the geometric

properties of the object being explored, but also on the properties of the robotic

�nger (the \viewer") performing the exploration.

Some types of features, particularly small ones, cannot be sensed accurately

through static touch; motion is required. To excite the fast-acting, vibration sen-

sitive mechanoreceptors embedded in the �ngertips, humans roll and/or slide their

�ngertips over a surface[41]. Emulating this behavior presents a challenge in that

manipulation must move the object to a desired location with a stable grasp and

34
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move the �ngers and sensors over the features. The exploratory procedure in the

previous chapter enabled this combination of manipulation and exploration. Using

this procedure as a way to move robotic �ngers over a surface, we can now consider

the mechanics of detecting features.

This chapter begins with a review of previous work on feature detection and

the representation of object surface geometry. Next, surface feature de�nitions are

presented based on surface curvature. These de�nitions depend on the geometries

of both the robot �ngertip and the object being explored. It is also shown that the

trajectory traced by a round �ngertip rolling or sliding over the object surface has

some intrinsic properties that facilitate feature detection. Then, several algorithms

based on the feature de�nitions are presented and compared. Finally, simulated and

experimental results are presented for feature detection using a hemispherical �ngertip

equipped with a tactile sensor.

3.1 Previous Work

As described in Chapter 1, a number of investigators have addressed the problem of

using robotic �ngers in exploratory procedures. Examples include work by Allen[3]

and Pribadi[70], which focus on the sensing of global object shapes and on �tting

shapes to object models. The integration of tactile sensing and dexterous manip-

ulation with rolling or sliding has also been observed in recent work by Li[46] and

Maekawa[49]. However, none of the previous work with robotic �ngers has addressed

the de�nition and detection of features for haptic exploration.

Much of the work on identi�cation of features has come from the vision research

community. In early work, the de�nitions of features in applications such as topog-

raphy were often ambiguous because they were based on natural language. More

recently, researchers have developed de�nitions based on various mathematical mod-

els, including local maxima of pixels in a discrete 2D image and height or intensity

graphs.

Research using a di�erential geometry approach includes �nding the local ex-

trema of principal curvatures[56] and curvature properties of level sets of smooth

functions[22]. In another approach, Kunii, et al.[43] extended the idea of the Medial

Axis Transform to develop skeletons of object shape from image data and used caustic

singularities in these skeletons to determine the locations of ridges. Applications of
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ridge detection in images include medical imaging[53] and the analysis of topographic

data[44].

While these feature de�nitions are applicable to understanding image features,

they are not appropriate for haptic exploration. Exploration with a robotic �nger

is inherently di�erent from vision because it is active rather than passive, and the

sensing modality is tactile rather than optical. In addition, one in general has access

only to the path of the robotic �nger, rather than a full image of the object. Because

the de�nition of a feature is context-sensitive, it was necessary to create a new feature

de�nition for the context of exploration of surfaces with robotic �ngers.

3.2 De�ning Surface Features

This thesis will take a di�erential geometry-based approach to surface feature de�-

nition. This section briey reviews a mathematical description of an object surface

and de�nes the curves associated with the path of a round �nger rolling or sliding

over the object surface. Then, the de�nitions of two major feature types are provided

for the context of robotic haptic exploration. Finally, examples are given of di�erent

kinds of macro features that use the basic feature de�nitions.

3.2.1 Di�erential Geometry Surface Descriptions

As described in Appendix A, Montana[57] de�nes a Gauss map for a surface patch

and a normalized Gauss frame at a point on the surface patch. Recall that the axes

of the Gauss frame are

x(u) =
fu(u)

jjfu(u)jj
y(u) =

fv(u)

jjfv(u)jj
z(u) = g(f(u)); (3.1)

and they can be used to calculate the curvature matrix K:

K =

2
4 x(u)T

y(u)T

3
5 h zu(u)

jjfu(u)jj
zv(u)
jjfv(u)jj

i
: (3.2)
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This equation is a 2� 3 matrix right-multiplied by a 3� 2 matrix, thus K is always

a square 2� 2 matrix.

As shown in the following section, the curvature matrix can be used to �nd the

principal curvatures and directions of a surface. The Gauss frame is also used to

introduce some additional surfaces that are useful for the purposes of feature de�nition

and detection.

Principal Curvatures and Directions

Principal curvatures and their associated principal directions are classical measures

that can be used to describe the local shape of a surface. Given a smoothly curving

surface (at least C2 continuous), there will be a direction in which the curvature

is greatest, called the �rst principal direction. The curvature of the surface in this

direction is called the �rst principal curvature. The vector that is orthogonal to both

the �rst principal direction and the surface normal (z(u)) is called the second principal

direction and the curvature in that direction is the second principal curvature. The

second principal direction represents the direction in which the surface is least curved.

There are two cases for which the principal directions are unde�ned: when the

surface is locally spherical or locally planar (at an umbilic or navel point[84]). The

principal curvatures are de�ned for all smooth surfaces: in the cases of spherical

and planar regions they are identical, and zero in the planar case. Similarly, the

second principal curvature will be small if the point is near a feature that is a three-

dimensional ridge or crack where the curvature is not high in one direction.

If the curvature matrix K is a diagonal matrix (Equation 3.3), then the diagonal

elements k1 and k2 (where jk1j � jk2j ) are the principal curvatures of the surface at
the location of the Gauss frame. The principal directions correspond to the x(u) and

y(u) directions of the Gauss Frame.

K =

2
4 k1 0

0 k2

3
5 (3.3)

One can also calculate the principal curvatures and directions from the Second

Fundamental Form. Consider the axes of the Gauss frame to be an orthogonal frame
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(x;y; z) = (e1; e2; e3). The Second Fundamental Form is a matrix of partial deriva-

tives

A =

2
4 !11 !12

!21 !22

3
5 ; (3.4)

where the elements !ij are computed as the dot product of ej and the �rst derivative

of the gradient in the ei direction. As shown by Interrante[37], it is possible to extract

the principal curvatures from A by creating the diagonalized matrix D.

A = PDP�1 (3.5)

D = P�1AP (3.6)

where

D =

2
4 k1 0

0 k2

3
5 (3.7)

P =

2
4 p1u p2u

p1v p2v

3
5 = h

p1 p2

i
: (3.8)

Again, k1 and k2 are the principal curvatures where jk1j � jk2j. The principal

directions are the corresponding eigenvectors p1 and p2, which are the columns of the

matrix P .

As a simple example, consider a robotic �nger with a �ngertip that is locally

spherical (surface Sf) at the contact point with radius rf . Using the formulation for

the curvature matrix above, Kf for the �ngertip is

Kf =

2
4 1

rf
0

0 1
rf

3
5 : (3.9)

The principal curvatures for the �ngertip are k1 = 1
rf

and k2 = 1
rf
. Because the

�ngertip is (at least locally) spherical, all points on the surface are umbilic points.

Thus, the principal curvatures are equal and the principal directions are unde�ned.

Parallel Surfaces

Now consider that a spherical robot �nger is tracing over the surface of an object,

keeping point contact at all times. The �nger may be rolling and/or sliding. As the
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�nger moves over the surface of an object, the center point of the �nger generates an

o�set surface. (This is the same concept as the o�set surface de�ned in CNC tool

path planning and other manufacturing applications. In such applications, one must

consider that the commanded position of the tool is not where the cutting will occur,

because of the radius of the bit[73].)

The concept of a parallel surface can be used to develop a description of the o�set

surface traced by the �ngertip's center of curvature . A parallel surface is constructed

by drawing a normal line (determined by the z-axis of the Gauss frame, z(u)) with

length rf at each point on the surface. The locus of the end points of these normal

lines is the parallel surface. sp(u) 2 Sp maps U to R3:

sp(u) = f(u) + rfz(u); (3.10)

where z(u) is the unit vector in the z-direction of the Gauss frame, rf is the radius

of the �ngertip, and u parameterizes the surface.

Parallel curves can be developed for curves in a plane. Now, at each point, one

uses the unit principal normal to the curve (which lies in the plane of the curve)

instead of the surface normal. Figure 3.1 shows a series of parallel curves (where

di�erent radii rf are considered), created for an ellipse. Inside the ellipse in Figure

3.1, there are discontinuities in the parallel curves for certain values of the length

of the normal line, rf . These discontinuities are called caustic points[42], and occur

when the radius of curvature of the object is smaller than �rf . As one can see from

the �gure, caustic points will occur even when the original curve is smooth.

Similarly, caustic points can occur when generating parallel surfaces. Caustic

points are particularly important when considering the path of the center point of

a spherical �ngertip tracing over the surface, because they represent regions where

the �ngertip cannot trace out the theoretical parallel surface. Thus, in the region

bracketed by caustic points, the �nger cannot exactly follow the contours of the

object because of interference between the object and �ngertip. The implication of

this result is that caustic points will be associated with features having high local

curvature.

To better illustrate this concept, let us present another surface de�nition, the

traced surface. The traced surface is de�ned as the envelope of spheres with centers

on the original surface. Figure 3.2 shows that the only di�erence between parallel

and traced surfaces is at the region surrounding a point where the radius of curvature
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ellipse        
parallel curves

Figure 3.1: A series of parallel curves for an ellipse with a major axis of length 5 and
a minor axis of length 2. The length of the normal line varies between -1 and 1.

of the surface is less than the negative of the radius of curvature of the �ngertip.

Because the �nger travels along a path that is a curve over the original surface,

the parallel and traced surfaces may also be discussed in terms of parallel and traced

curves. As shown in Figure 3.2, the caustic points bracket the area of the parallel curve

where the original curvature, ki(S), is less than the negative of the �nger curvature,

� 1
rf
. Due to interference, however, the path of an actual �nger tracing over the

surface is limited before the region bracketed by the caustics. The interference point

is de�ned as the point where the �nger can no longer follow the parallel curve when

entering a region of ki(S) < � 1
rf
. A locus of interference points creates an interference

curve for a surface. Any curve on the parallel surface that travels in and out of a

continuous area with ki(S) < � 1
rf

must travel through two interference points. Thus,

the traced surface, St, is the parallel surface without the portions that the �ngertip

cannot access due to curvature and interference limitations. As the �nger moves along

a surface, a traced surface will always have a discontinuity at an interference point.

The interference points (or curve) can be calculated by �nding the location where the

traced curve (or surface) intersects itself.

Figure 3.3 shows interference points (discontinuities in the traced surface) and

caustic points (discontinuities in the parallel surface). This �gure shows that, in

addition to the curvature limit that causes caustic points and interference, there is
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Figure 3.2: 2-D slices showing the (a) parallel surface, the locus of endpoints of equal-
length lines drawn normal to the original surface, and (b) traced surface, the envelope
of spheres whose centers are on the original surface. The radii of the spheres and the
length of the normal lines are equal.

another phenomenon that occurs when the positive curvature of the object is greater

than that of the �ngertip. When ki(S) >
1
rf
, the curvature of the path of the �ngertip

is limited by the curvature of the �ngertip, 1
rf
. Figure 3.3 indicates a \cusp" region

where this is the case. At a true cusp, the curvature is in�nite and the normal

is unde�ned, however, given the measurement capabilities of real sensors, we can

consider a cusp to have �nite curvature and a unit normal. The curvature limitation

( 1
rf
) of the traced surface over a cusp region has a tendency to round out the traced

surface compared to the original surface.

We will now consider one additional surface that will be useful in the description of

surface features. The estimated surface is the surface obtained by taking the negative

traced surface of the traced surface. Shown in Figure 3.4, the estimated surface clearly

indicates that there are unobservable regions of the original surface at locations near

the interference point. The curvature of the estimated surface in that region is limited

by the curvature of the �ngertip 1
rf
. The estimated surface points se(u) 2 R3 can be

determined from the traced surface using

se(u) = st(u)� rfzt(u); (3.11)
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Figure 3.3: 2-D slice of a spherical �ngertip with original, parallel, and traced surfaces
with interference and caustic points identi�ed.

Figure 3.4: 2-D slice of a spherical �ngertip with original, traced, and estimated
surfaces with the interference point and unobservable region identi�ed.

where st(u) are points on the traced surface, zt(u) is the z-direction of the Gauss

frame of the traced surface (which is the same as that of the original surface, except

at interference points and true cusps on the original surface), rf is the radius of the

�ngertip, and u parameterizes the surface.

3.2.2 A New Feature De�nition

Using the surface descriptions developed in the previous section, a new feature de�ni-

tion can be created for the purposes of feature identi�cation. The concept of a feature

in the context of haptic exploration with robotic �ngers is not only dependent on the

surface of the object, but also on the size and shape of the �nger. In this work, we

assume a spherical �ngertip. We begin by de�ning a curvature feature, then use this

as a building block to de�ne macro features.
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Suppose that an object can be locally �t with a surface S with principal curvatures

k1(S) and k2(S). The basic criterion for de�ning a feature is maximum principal

curvature:

De�nition 1 A curvature feature, as detected by a spherical robotic �ngertip with

radius rf tracing over a surface S with an outward normal and curvature K, is a

compact region where at least one of the principal curvatures satis�es ki >
1
rf

or

ki < � 1
rf
. These are positive curvature (convex) and negative curvature (concave)

features, respectively.

This means that the magnitude of the radius of curvature of the �ngertip is larger

than that of the curvature feature. The simple de�nition above can be used to de�ne

a macro feature, which consists of a pattern of curvature features.

De�nition 2 A macro feature is an compact region on surface S containing one or

more curvature features. A macro feature is only formed from multiple curvature

features if each curvature feature is near another curvature feature, within a distance

equal to the radius of the �ngertip.

There are speci�c reasons for de�ning curvature and macro features in this way.

For the purposes of haptic exploration with robotic �ngers, it is not enough to know

the locations of maximal curvature, because the region, or extent, of the feature may

be an important property. When creating models of objects using tactile data, it may

be desired to create separate local (feature) and global (object) models. Curvature

and/or macro features may also be considered as perturbations from the global model.

As presented in the de�nition, macro features are patterns of curvature features that

are close enough to each other to be considered part of the same entity.

The curvature feature de�nition di�ers from de�nitions in previous work, which

de�ne a \feature" or \ridge" as a location of maximal curvature. The de�nition here

is not a single point with locally maximal curvature, but a region where the curvature

is higher than a threshold (the curvature of the �ngertip). In addition, previous work

in computer vision literature (e.g., Monga, et al.[56]) considered a \ridge" feature to

occur at each locally maximal point. The macro feature de�nition here requires a

pattern of curvature features and is bracketed by the outermost curvature features in

the pattern.
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Feature Name 3D picture 2D picture

Convex \Cusp"

Step

Bump

Pit

Ridge

Ravine

Table 3.1: A partial list of possible macro features. In the 2D picture (a plan view of
the surface), the gray regions indicate curvature features, with the necessary principal
curvatures labeled. In this table, + indicates a positive curvature feature, - indicates
a negative curvature feature, and " is no curvature feature (jkij < 1

rf
). It is assumed

that jk1j � jk2j. The white regions between the curvature feature regions have a
maximum width of rf , the radius of the �ngertip.
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Figure 3.5: The path of the spherical �ngertip in this picture does not encounter any
high curvature regions as it travels over a ridge at a shallow angle. Because of such
cases, where a feature exists but is not detected, macro feature de�nitions cannot
contain any assumptions about the path of the �ngertip.

Macro Features

It is generally recognized that de�ning features is a diÆcult problem, particularly for

the unstructured surfaces we would like to consider for exploration. Using the basic

curvature feature de�nition presented earlier, an in�nite number of macro features

may de�ned. While the minimum number of curvature features required for a macro

feature is one (creating a concave or convex cusp), additional curvature features can

be used to de�ne more complicated macro features. Table 3.1 shows several possible

macro features and their de�nitions in terms of �rst and second principal curvatures.

While Table 3.1 shows one possible de�nition for each feature type, it is important

to recognize that these de�nitions and the corresponding macro feature names may

change depending on the application. Thus, this list of macro features is meant to

demonstrate several possible features, rather than provide de�nitions for all applica-

tions. The general de�nition of macro features as combinations of curvature features,

however, will not change.

It should also be recognized that the macro feature de�nitions depend only on

the surface geometry and the radius of the robotic �ngertip. While it is tempting to

consider the path of a �ngertip as it travels over the feature, there is no guarantee

that any given exploratory procedure will cause the �nger to travel in a direction that

will encounter and detect curvature features. For example, if a �nger crosses a ridge

at a very shallow angle (Figure 3.5), no curvature features will be detected. Thus,

the macro feature de�nitions do not use any assumptions about the �ngertip path.

As an example of a macro feature, a bump feature is a region where the �rst
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principal curvature creates a positive curvature feature in a ring. Inside that ring,

there must be a region where both the �rst and second principal curvatures create

positive curvature features. Because curvature features must be close enough to

each other to consider them part of the same macro feature, the largest distance

between the two regions is the radius of the �ngertip, rf . One possible de�nition

of a ridge feature is a region where the �rst principal curvature creates a negative

curvature feature region around the border, and a positive curvature feature region

on the inside. The ridge is di�erentiated from the bump by the fact the the second

principal curvature at the inner region is less than the curvature of the �ngertip,

or approximately zero. For all the features shown in Table 3.1, a curvature of "

corresponds to any curvature less than that of the �ngertip. Based on these feature

de�nitions, there is nothing preventing features that close upon themselves, such a

ridge in a ring shape, or a step feature that is revolved to create a plateau.

An interesting application of these feature de�nitions is that one can perform mul-

tiscale observations of features on a surface. Given a surface explored with an actual

�ngertip of radius rf , certain regions on the surface will or will not be considered cur-

vature features. After a robotic �nger has already explored a surface and calculated

an estimated surface, it is possible to assume di�erent �ngertip radii ri > rf that will

allow for simulated feature detection on di�erent scales. ri must be greater than or

equal to rf because the unobservable regions of the original exploration cannot be

used to detect any additional features.

3.2.3 Example: A Bump Feature

Consider the three-dimensional parabolic surface of revolution \bump" shown in Fig-

ure 3.6. The bump surface is de�ned by the set

U = f(u; v)j � 1 < u < 1; 0 < v < �g (3.12)

and the map

f : U ! R3;

(u; v) 7! (u cos v; u sin v;
1

1 + au2
) (3.13)

for some a 2 R.
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Figure 3.6: A bump feature (bottom), with parallel surface (top).

It can be shown that (f; U) is an orthogonal coordinate system and thus the

normalized Gauss frame exists for all u = (u; v) 2 U . For the bump example, the

Gauss frame is

x(u) =
h

1
c
cos v 1

c
sin v 2au

cd2

iT
y(u) =

h
� sin v cos v 0

iT
z(u) =

h
2au
cd2

cos v 2au
cd2

sin v 1
c

iT
; (3.14)

where

c =

vuut1 +
4a2u2

(1 + au2)4
(3.15)

d = 1 + au2: (3.16)

The curvature matrix is

K =

2
4 2ad(1�3au2)

c(d4+4a2u2)
0

0 2a
cd2

3
5 : (3.17)

Using the simpli�cation variables c and d de�ned in Equations (3.15) and (3.16),
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Figure 3.7: Curvature features are identi�ed where jki(S)j > 1
rf
.

the parallel surface is de�ned by points

sp(u) =

2
6664

(u+
2arfu

d2c
) cos v

(u+
2arfu sin v

d2c
) sin v

1
d
+

rf
c

3
7775 : (3.18)

To determine the locations of the curvature features, we can plot the principal

curvatures of the object surface and the robotic �ngertip with respect to the variable

u. Figure 3.7 shows the principal curvature k1(S) (the K11 element of the matrix in

Equation 3.17) and � 1
rf
, where rf = 1, plotted against u for a = 15. There are three

curvature features: two negative, and one positive. The pattern of curvature features

can be identi�ed as a bump as presented in Table 3.1.

3.3 Feature Detection

In this section, algorithms are presented for the detection of surface features using

the curvature and macro feature de�nitions.

Figure 3.8 shows how position and tactile sensor data from the �ngertip can be

used to identify features. Di�erent chains on the diagram result in di�erent identi-

�cation algorithms. The algorithms can be divided into two groups: those that use
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Figure 3.8: Algorithms for feature detection.

tactile sensor data to �nd the object surface and features, and those that use �nger

position data.

3.3.1 Using Tactile Sensor Data

Using the tactile sensor data and a model of the robot �nger, one can compute the

trajectory of the �nger/object contact point in space and build a model of the surface.

(This model is the estimated surface.) This method works for any �ngertip shape, as

long as the contact point can accurately be sensed. However, this method is limited

because most tactile sensors are somewhat noisy and of low resolution and bandwidth

compared to joint angle and force sensors. Contact location data may not be accurate

enough.

The �rst algorithm (1) in Figure 3.8 calculates the curvature at each point on the

estimated surface using a numerical di�erence method. Depending on the noise in the

data, the points on the estimated surface may �rst need to be smoothed or �t to an

analytical model before di�erentiation. Sets of points on the smoothed or modeled

surface with a curvature greater that that of the �ngertip may then be identi�ed

as features. Methods for smoothing data and calculating curvature are described in

Section 3.3.3 and Appendix B.

The second algorithm (2) in Figure 3.8 requires that the normal of the surface

be recorded over time. With a spherical �ngertip, this is easily determined from the

contact point on the �nger.

n =
cf � cs

jjcf � csjj (3.19)
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where n is the unit normal vector to the surface, cf is the center point of the spherical

�ngertip, and cs is the contact point between the �nger and the surface. With some

tactile sensors[51], the surface normal is the directly sensed quantity, so obtaining the

surface normal does not require any �ngertip position data.

Again, due to noise in the sensor or position of the robot �nger, the normal may

need to be smoothed. The normal is di�erentiated with respect to arclength of the

contact path, providing a spike at the location of the feature. This location can then

be mapped to the estimated surface. This method uses the same information as the

�rst algorithm, but may improve feature detection because, with some tactile sensors,

the surface normal is directly sensed. This is superior to taking the derivative of a

noisy surface estimation.

3.3.2 Using Fingertip Center Position Data

Feature detection can also be accomplished without tactile sensor data, using the

traced surface. If the �ngertip is spherical (in 3D) or circular (in 2D), the traced

surface created by the center of the �ngertip can be used to estimate the original

surface without tactile sensor data. Estimation of the original surface can be done

using Equation (3.11). This method, however, is very susceptible to noise in zt(u).

Before calculating zt(u), an improved estimation of the surface can be obtained by

�tting a curve to or smoothing the traced surface.

The third algorithm (3) in Figure 3.8 extracts the features based only on the

curvature of the traced surface. This has an advantage over the previous methods

because the traced surface is likely to be less noisy than the estimated surface which

used tactile sensor data. In addition, the traced surface will show interference points,

which are a good indicators of features because they are discontinuities in the traced

surface. This serves to enhance negative curvature features.

The fourth algorithm (4) in Figure 3.8 is similar to the previous algorithm, al-

though the order of surface estimation and feature detection has been reversed. Now

we use the traced surface to estimate the original surface �rst, and then perform

feature detection using the curvature of the estimated surface.

A key observation in the last two algorithms is that tactile sensor data is not

necessary. While contact point information may be necessary for control, this data

is not used in the last two feature detection algorithms. Instead, these algorithms

rely on the relatively accurate and non-noisy proprioceptive information from the
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robot's joint angle sensors. (Proprioception is the ability to sense of the absolute

position of the body or limbs.) While humans in general have poorer proprioception

than robots, we do have superior tactile sensing. The algorithms developed here for

robots are certainly not the way that humans detect features. It is important in the

development of these algorithms to capitalize on the strengths of the system doing

the exploration; for the case of robotic �ngers, this means using position rather than

tactile sensing.

3.3.3 Tactile Data Smoothing

Because both tactile and �ngertip position data are inherently noisy, �ltering algo-

rithms can be used to create smoother data for curvature calculation in the feature

detection algorithms. Curvature calculation is a second derivative computation, thus

it requires smooth data sets for accurate curvature estimation. There are two main

approaches to smoothing that will be addressed: smoothing using curvature limita-

tions, and smoothing based on noise type.

Smoothing Using Curvature Limitations

For algorithms that use only the position of the �ngertip, two nonlinear smoothing

algorithms based on curvature limitations can be used to smooth noisy data in the

traced and estimated surfaces. The algorithms apply the observations in Section 3.2.1

that the traced surface must round sharp cusps or corners on the object surface and

the estimated surface must �llet sharp indentations.

At each point on the traced and estimated surfaces, the principal curvatures are

calculated using a numerical di�erence method. On the traced surface, any points for

which ki(St) >
1
rf

are invalid (i.e., they cannot correspond to motion along an object

surface) and should be deleted. After removing these points, the traced surface can

be smoothed by any standard method. After the traced surface is smoothed, the

estimated object surface is calculated using the envelope of rf circles centered on the

traced surface. In the estimated surface, the principal curvature ki(St) must be at

least � 1
rf
. Although the actual object surface could have regions with larger negative

curvature, it is impossible for the �ngertip to detect such regions. Again, such points

should be deleted and the remaining surface can be smoothed using any standard

method.
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Smoothing Using Noise Type

The previous smoothing method was speci�c to the expected geometry of the tactile

data. Smoothing using noise type, however, can be used on any kind of data provided

that the noise type matches an existing smoothing technique.

In order to determine which �lters might be appropriate for smoothing tactile

and position sensor data, a �2 (Chi-squared) test was implemented. The �2 test is a

goodness-of-�t measure that can be used to test the probability that a sample of data

is or is not normally distributed[7, 55]. It was determined that the noise was normally

distributed, so Gaussian or Wiener �lters were targeted as the best types of �lters for

smoothing the tactile data. Appendix B describes the process for determining noise

type and a comparison of several �ltering techniques. The smoothing algorithms were

evaluated based on their ability to minimize the number of false positive and false

negative feature identi�cations.

3.4 Simulation and Experiments

3.4.1 Simulated Data for Surface Estimation

A realistic simulation of a spherical �ngertip traveling over a step shows the curvature

limitations in surface estimation. For the purposes of simulation, a realistic traced

surface must be calculated. First, the parallel surface is calculated from the original

surface, then the interference points are identi�ed and the unreachable points are

removed to form the traced surface. Next, because points on the parallel surface are

not spaced equally, the surface is re-calculated using equal arclengths between the

points. Finally, Gaussian noise with a variance (�) of 0.01 is added for realism.

Nonlinear smoothing algorithms are then invoked to limit the curvature to realistic

values. The �rst curvature limitation algorithm is used to remove unreachable points

from the traced surface, then it is smoothed. Then, the original surface is estimated

using the envelope of circles with centers on the smoothed traced surface. Next, the

second curvature limitation algorithm is used to remove unreachable points from the

estimated surface. As a �nal step, the surface can be �t to create an analytical model.

Figure 3.9 shows a 2D slice of the following four surfaces for this example: the object

surface, the traced surface with noise, the smoothed traced surface, and the smoothed

estimated object surface.



CHAPTER 3. A FEATURE DEFINITION FOR HAPTIC EXPLORATION 53

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0.5

0

0.5

1

1.5

2

2.5

3

x(cm)

y(
cm

)

Circular Robotic Finger

finger and surface        
traced surface w/noise    
smoothed traced surface   
smoothed estimated surface

Figure 3.9: Simulated data of a �nger tracing over a step.

3.4.2 Experiments for Feature Detection

Apparatus

Manipulation experiments were performed using two-degree-of-freedom robotic �n-

gers and tactile sensors developed by Maekawa, et al.[50, 51]. The optical waveguide

tactile sensors on the �ngers form a hemispherical �ngertip and provide analog signals

that can be used to calculate the intensity and centroid of the contact point(s). The

20 mm diameter sensors can be sampled at 5 kHz, and have a �eld of detection of

�75 degrees from the sensor pole. The error is approximately �1 degree, although

this can change when the contact area increases during sliding. A calibration was

performed to characterize and remove the nonlinearity of the sensor. Appendix C

provides a detailed description of this tactile sensor.

As is typical of many robotic �ngers, the workspace was limited and thus a com-

bination of rolling and sliding was necessary to move the �ngers over the surface of

the object. A hybrid force/velocity control was used to obtain smooth sliding over

at surfaces with bump features (0.5-1.5mm diameter wires placed on the surface).

During motion, joint-angle potentiometers were used to determine the position of

the center of the hemispherical �ngertip. The location of the contact point on the

�ngertip was then used to determine the direction of the contact normal, which was

�ltered to reduce noise. The center of the �ngertip can be sensed to within �0:2 mm
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Figure 3.10: The experimental apparatus, a two-degree-of-freedom robot �nger
equipped with a tactile sensor.

and the contact location can be estimated within �0:5 mm. A tension di�erential-

type torque sensor is used to measure torque in the joints and calculate the Cartesian

force at the �ngertip.

Because the �ngertip is spherical, the contact location on the �nger gives the

tangent and normal of the rigid surface. The velocity of the �ngertip tangent to the

surface and the force normal to the surface were controlled using a simple proportional

law. The �nger moved with an average speed of 0.03 m/sec and a normal force of

1� 0:01 N.

Results

Each algorithm outlined in Figure 3.8 was tested using the data from these exper-

iments. Algorithm (1) often resulted in false negative identi�cations because the

estimated surface was obtained directly from the contact point. Concave curvature

features on the object were overlooked because of curvature limitations; the data for

these points are automatically smoothed to the radius of curvature of the �ngertip.

Using algorithm (2), spikes in the contact normal indicated the presence of negative
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Figure 3.11: Magni�ed view of un�ltered estimated object surface data.

curvature (concave) features. This method does not provide good detection of pos-

itive (convex) features, because the normal direction does not change as quickly at

those points.

Using algorithm (3), features were extracted using the curvature of the traced

surface, then mapped to an estimated surface. This algorithm performed the best

for the application of small bump features on a at surface. Figure 3.11 shows a

magni�ed view of the unsmoothed estimated object surface data in a region with no

features. Figure 3.12 shows the traced and estimated surfaces and features detected

for a bump on a at surface angled at 45 degrees, with a 0.65 mm diameter wire

stretched across the surface. The orientation of the object is the same as that in

Figure 3.10. Algorithm (4) resulted in false negatives for the same reason as algorithm

(1): using the estimated surface to determine locations with high curvature is not

feasible because of the curvature limitations.
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Figure 3.12: Feature detection with a robotic �nger rolling/sliding on a 45Æ surface
with a 0.65 mm bump feature. The �nger size is shown for scale. (See Figure 3.11
for a magni�ed view of original data points.)

3.5 Conclusion

In this Chapter, features were de�ned for the context of robotic haptic exploration

with curved �ngertips. Features may be identi�ed using the curvatures of traced

or estimated surfaces, with or without tactile sensor data. In particular, the traced

surface described by a spherical �ngertip accentuates concave features on the object

surface. This is an interesting result because, while contact location data may be

necessary for stable manipulation and exploration control, such data is not needed

to recreate the object shape or to identify small surface features. De�nitions for

curvature and macro surface features were distinguished; macro features are patterns

of curvature features that may be used to de�ne 3-D and compound features such as

bumps, ridges, and ravines.

Methods for �ltering were also addressed based on the inherent curvature limita-

tions of the physical system and the type of noise present in the tactile or position

data. Because the calculation of curvature requires second-order derivatives, it is

essential that the data be smooth.

While these feature de�nitions are useful for detecting and identifying features,

the problem of detailed exploration of features still remains. The experimental work
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for this chapter used a two-degree-of-freedom robot �nger. In this case, the �nger was

able to move back and forth over a feature, but there was no opportunity to do further

exploration in other directions. In addition, it is possible that the feature may not be

oriented in such a way to allow the �nger to travel in a principal direction. Thus, the

next chapter addresses the development of 3D haptic exploratory procedures that use

the curvature and macro feature de�nitions to eÆciently explore features and develop

a global map of features on an object.



Chapter 4

Feature-Guided Exploration

In the previous chapters, a procedure for multi�ngered haptic exploration was devel-

oped and surface features were de�ned for detection and identi�cation purposes. We

now consider the situation where a robotic �nger has suÆcient degrees of freedom

to actively explore a surface in three dimensions. This is termed \feature-guided"

exploration because the discovery of a feature leads to changes in the �ngertip path.

Features may be detected when a �nger's path simply moves the contact point over

the feature, however, complete feature type and shape identi�cation may require fur-

ther exploration. For local exploration, it is assumed that a feature has been detected

and further exploration is desired. In this case, the robot �nger's trajectory is modi-

�ed in order to collect additional data about the feature. While planning for global

exploration is not discussed in this work, we present a method for partitioning the

surface that can be used to choose the next direction of exploration based on the

features already found. In both local and global exploratory procedures, the �nger

uses feedback about discovered surface properties to actively plan new explorations.

Feature-guided haptic exploration as addressed in this thesis has two levels. The

�rst is local exploration: Upon discovering a feature, how should the �nger navigate

around or over it in order to extract desired feature properties? This involves issues

of control and tactile sensor data interpretation, and uses the feature de�nitions

presented in Chapter 3. The second problem is how to model the features on an

object. This model can be used in the planning and execution of global exploration

by mapping the features on the surface of the object.

58
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4.1 Previous Work

Although there have been several investigations of haptic exploration, active or feature-

guided exploration in three dimensions has received relatively little attention in the

literature. The relevant areas of research are tactile servoing, surface modeling from

point data, and skeletonization algorithms for object modeling.

4.1.1 Tactile Servoing and Hybrid Control

Tactile servoing is the process of using data from tactile sensors to control the motion

of a robotic hand and the object it is manipulating. Hemami, et al.[6, 70, 31, 30]

performed surface tracking with a robotic �nger equipped with a tactile sensor. Us-

ing a low cost, low resolution end-e�ector force sensor, they developed a learning

controller that was designed to reject sensor noise and perform surface estimation for

a generalized quadric shape. They also used a hybrid velocity/force control to move

a robot end-e�ector over the surface of an object, although geometries were known a

priori so tactile data was not necessary. In other work, they showed that tactile data

can be used with a controller to track edges of a certain sharpness. Sikka, et al.[79]

also performed tactile servoing. Drawing an analogy to image-based visual servoing,

they monitor the progress of a manipulation task and recover object geometry using

tactile images on an array-type sensor. A similar system was used by Allen[3] to ex-

plore regions of an object occluded from a vision system. Maekawa, et al.[49] stably

manipulated an unknown object while using tactile sensor feedback to observe the

motion of contact points during rolling. The feature tracing work presented in this

thesis di�ers from these tactile servoing techniques because the goal is for the �nger

to trace the sides of a feature on a surface rather than along a sharp edge.

4.1.2 Object Modeling from Data

Object modeling from data has been used primarily in the computer vision and graph-

ics communities to build up global object models from cloud points of data. Solina

and Bajcsy[81] used data from laser range �nders for �tting superquadrics. Modi�ed

superquadric shapes were obtained by bending and tapering. Chek, et al.[47] also

used implicit surfaces to model data sets consisting of cloud points. Algebraic func-

tions that closely approximated the data were obtained by Implicit Solid Modeling, a

constructive scheme for approximating Boolean volume set operations on implicitly
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de�ned primitive volumes. However, none of the previous work has used tactile data

or focused on the skeletonization and mapping of features on a surface. One goal of

the procedure for haptic exploration described in this chapter is to obtain data for

such a modeling algorithm.

4.1.3 Skeletonization

Shape skeletons are geometric abstractions of curves, surfaces, or solids that are

useful as lower-dimensional representations. The skeleton is known in 2D as the

medial axis and in 3D as the medial surface. The Medial Axis Transform (MAT) is a

skeletonization technique that was �rst developed by Blum[9] as an alternate shape

description for biological applications. In a famous analogy, Blum proposed that the

medial axis can be found by considering the object as a patch of grass whose boundary

is set on �re. As the �re-front propagates to the interior of the patch, multiple ame

fronts will meet at minimal paths to the boundary, forming the medial axis. Some of

the �rst MAT algorithms used this approach; in this case, the medial axis is created

by uniform shrinking of the boundaries of the object[88].

There are many other algorithms for extracting the MAT of a 2D image. Chiang[17]

provides a good overview by describing �ve di�erent methods. Niblack, et al.[61] de-

veloped another algorithm, for which they prove connectivity and use a distance

transform, which is a good approximation to the Euclidean distance. Another MAT

algorithm was designed by Shih and Pu[76] that trims branches to make the skeleton

simpler and more useful for object recognition. Sudhakar, et al.[88] identi�ed the

properties of the MAT which are of primary interest to engineering design: dimen-

sional reduction, homotopic equivalence, and invertibility. Two maps are homotopic

if one can be deformed into the other. For discrete objects, they de�ne a new skeleton

which shares these properties with the MAT for 2D and 3D cases. Skeleton-based

modeling operations on solids and methods for computing skeletons of free-form solids

are also considered by Storti, et al.[86] and Turkiyyah, et al.[91]. A more detailed

description of the MAT and how it can be calculated from tactile data is provided in

Section 4.4.3.
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Figure 4.1: An overview of the phases for local and global haptic exploration.

Figure 4.2: The �rst phase in exploration is moving the �nger over the object during
manipulation or while searching for a feature.

4.2 A Procedure for Feature-Guided Exploration

This section describes a high-level procedure for feature-guided haptic exploration.

Details about the phases of active haptic exploration are presented in the other sec-

tions of this chapter. Figure 4.1 shows the progression of exploration using these

phases. In this �gure, the black dot represents the contact point of the �nger per-

forming the exploration.

A feature may be discovered on the surface of an object during a manipulation

task, a random walk of the �ngertip over the surface, or a speci�c multi�ngered

exploratory procedure as described in Chapter 1. For the purposes of this work, let

us assume that one of these three �nger-motions results in the �nger encountering a

feature while rolling and sliding over the surface. Control for this motion on a surface

in 3D space is described in Section 4.3. This �ngertip motion corresponds to the

\feature search" phase of exploration as shown in Figure 4.2.

The �rst step in a feature encounter is identi�cation of the feature type. A basic

algorithm for feature detection was provided in the previous chapter. In this chapter,
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Figure 4.3: The second phase in exploration is moving the �nger over and around the
feature to determine type and record shape.

that work is expanded to include active exploration of three-dimensional features. In

order to identify feature type, the �nger must go through a local exploratory procedure

that will extract feature properties for type identi�cation. Then, the feature can be

modeled by tracing to �nd its boundary. For each feature, a shape skeleton, or 2D

medial axis, may be created in a coordinate system �xed on the surface of the object.

This is known as a feature skeleton. The procedures for determining feature type,

tracing the boundary, and modeling using skeletons are described in Section 4.4 and

correspond to the \local feature exploration" phase in Figure 4.3.

Another phase of feature-guided exploration uses the feature shape skeletons to

create a global map of features on the surface, called a global skeleton (Figure 4.4).

This \global modeling" is shown in the last block of Figure 4.1, and can be done

for the entire object surface or for any explored region. By dividing the surface into

regions for di�erent features, one can plan manipulation and further exploration.

The mechanics of planning for global exploration using the global skeleton are not

addressed in this work, however, we do consider several possible paradigms for global

feature search.

Depending on the application and spatial frequency of the features, there is a

trade-o� between complete exploration of individual features (performing the local

exploratory procedures described above) and continuing the search to �nd the next

feature. As will be shown, for a general application where knowledge of each feature is

important, the most eÆcient subsequent motion is to continue exploring any feature

until it has been completely traced. However, there may be speci�c applications in
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Figure 4.4: As the �nger explores more features, the skeletons of the features are used
to build a global skeleton that divides the surface into regions.

which exploration is performed to �nd one speci�c feature; as soon as a feature is

detected, a decision can be made about the likelihood of that feature being the goal.

4.2.1 Goals and Assumptions

No exploratory procedure will work in all situations; depending on the nature of

the surface, the features, and the robotic hand doing the exploration, the general

procedure for exploration will perform with varying degrees of success. Thus, this

section states the goals of exploration and assumptions used in this work.

Goals

The goals of active exploration as described in this chapter are:

� For each feature explored, identify feature type and create a skeleton of its

shape.

� Create a global skeleton based on the features.

In addition, we consider methods for performing global exploration depending on

the nature of the features and their spatial distribution, but do not formulate a global

exploration goal in this work.

Assumptions

There are a number of assumptions that are necessary to guarantee success of feature-

guided exploration, where success is de�ned as meeting the goals stated above. The

assumptions are:
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� The viewer is either a single robotic �nger or a multi�ngered hand for which

at least one �nger can report contact location while exploring. The reported

contact location and the local exploratory procedures (type identi�cation and

boundary tracing) discussed in the next section can be used to control the �nger

to trace around features that have boundaries, such as ridges and ravines. The

�nger must have a shape that will allow it to either accurately record contact

location for calculating the curvature of the surface, or be spherical so that an

o�set surface can be used to identify curvature features as discussed in Chapter

3.

� The item is held stationary by a �xture or other �ngers.

� The region of the object to be explored is a surface patch that is accessible by

a single �nger (with contact sensing) without manipulation or regrasping. The

surface is bounded by a limit curve de�ned by the workspace of the �nger. By

\global exploration," we refer to the search and exploration of multiple features

in this region.

� If a feature is not completely contained within the region under consideration,

the accessible portion of the feature may be explored. Later, models of di�erent

regions of the surface may be joined together to connect features that were

partially explored.

� Due to the hardware used in the experiments for local feature exploration, we

also provide two simplifying assumptions. The �rst is that the closest points

on any two features are at least one �ngertip diameter apart. This is so that

the �nger can trace the boundary of one feature without being distracted by

other feature contacts. The second is that each surface feature is one of the

basic types shown in Figure 3.1. In general, it is possible to identify and trace

any macro feature type, however, we simplify our approach by considering only

a few examples. Compound features, such as a ridge that suddenly dips down

and becomes a ravine, would be especially diÆcult to trace with only contact

point sensing.
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4.3 Control for Haptic Exploration

Given the goals of exploration and assumptions about the features and their dis-

tribution, we now develop the control for haptic exploration. If we are to use the

feature de�nitions presented in Chapter 3, this control law must cause the �nger to

travel parallel to the surface while maintaining contact. Tactile sensor feedback is

used to determine the current surface normal and provide information for the feature

detection algorithms.

4.3.1 Hardware

Experiments for controlling a �nger in 3D using tactile feedback to detect features

require a three-degree-of-freedom robotic �nger with a tactile sensor. The tactile

sensor can be any shape, but a spherical one is most useful for feature tracing.

The robotic �nger used was the 3GM haptic interface from Immersion Corporation[27].

While the device was originally created as a haptic interface, the software for con-

trolling it was easily modi�ed to make it into a robotic �nger. The 3GM has three

degrees-of-freedom of motion at the end e�ector, and three independent actuators.

Because the device is backdrivable and lightweight, gravity compensation and open-

loop force control can be used in the device control. Details about the 3GM can be

found in Appendix C.

The tactile sensor used was the Optical Waveguide Tactile Sensor from Maekawa,

et al.[51] Details of its function are also described in Appendix C. This tactile sensor

uses an analog position-sensitive device (PSD) to measure the reection of light from

the point(s) of contact. It can report contact centroid and contact intensity, which is

related to the amount of light reected. Because the sensor is analog and fast, data

can be obtained at the 1kHz rate used for controlling the �nger. Figure 4.5 shows a

picture of the robotic �nger and tactile sensor exploring a at surface with a ridge

feature.

4.3.2 Coordinate Systems

The basic control law uses proportional-derivative (PD) control parallel to the surface

and open-loop force control perpendicular to the surface. Thus, several coordinate

systems must be considered in the control for surface tracking, as shown in Figure 4.6.

The World Coordinate System (WCS) is a �xed coordinate system. For the purposes
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Figure 4.5: The 3GM as a robotic �nger, equipped with an Optical Waveguide Tactile
Sensor. The �nger is exploring a at surface with a single ridge feature.

Figure 4.6: Coordinate systems for haptic exploration.
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of single-�ngered exploration, the base of the �nger is stationary and can be assigned

to the WCS. The Tactile Coordinate System (TCS) is attached to the �nger, at the

center of the sensor if the �ngertip is spherical. Using the kinematics of the �nger,

the location of the TCS can always be calculated relative to the WCS. The z-axis

of the TCS always points normal to the �nger at the pole of the hemisphere. The

rotation matrix from the TCS to the WCS is

� =
�

2
+ 1 (4.1)

� =
�

2
� �3

RTW =

2
6664
cos(�) � sin(�) cos(�) sin(�) sin(�)

sin(�) cos(�) cos(�) � cos(�) sin(�)

0 sin(�) cos(�)

3
7775 ;

where 1 and �3 are two of the joint angles of the robot �nger as de�ned in Appendix

C.

The Surface Coordinate System (SCS) is constantly updated at the point of con-

tact. The SCS is calculated using the contact point information from the tactile

sensor. When location data is obtained from the sensor, the direction of the contact

normal is recorded by the unit vector nT in the TCS. The normal direction is then

converted to the world coordinate system using the rotation matrix RTW to become

nW and low pass �ltered to remove noise.

nWk
= 0:05RTWnT + 0:95nWk�1

(4.2)

If there is no contact, the normal returned is nT = f0; 0; 0g. When this case is

detected, the assumed contact normal is the z-axis of the TCS.

The z-axis of the SCS is assigned to be equal and opposite to the contact normal,

nT . While the normal is directly de�ned, there remains some choice about the direc-

tions of the x- and y-axes. To simplify matters, we have chosen the y-component of

xS to be zero, so that xS will always lie in the world x-z plane. The axes of the SCS

in the WCS are:

zS =

2
6664
zSx

zSy

zSz

3
7775 = �nW;
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xS =

2
6664
zSz

zSx

0

3
7775 ;

yS = zS � xS: (4.3)

A singularity will occur when zSx and zSz are both zero. In and near this case, one

can change the SCS to require that yS lies in the world y-z plane. An alternative

local SCS would be to de�ne the x-direction as the last direction of travel, projected

onto a plane perpendicular to the z-axis. In this case, a singularity occurs if the �nger

moves in the direction of the z-axis, although this would not be allowed to happen

using the control law for moving the �nger parallel to the surface. The SCS axes are

normalized to provide a unit vector description of the SCS orientation. Using these

vectors, the rotation matrix between the SCS and WCS can be constructed.

RTW =
h
xS yS zS

i
(4.4)

Further rotation matrices, RWS (World to Surface) and RTS (Tactile to Surface)

can obtained through matrix multiplication.

RWS = RSW
T (4.5)

RTS = RTWRWS (4.6)

4.3.3 PD and Normal Force Control

The combination of proportional-derivative (PD) and normal force control allows the

�nger to slide over the surface and travel over features while following the contours

of the object. The normal force control causes the �nger to maintain a constant force

applied to the object. This force is light enough so that friction does not impede

the motion of the �ngertip, but strong enough to allow the tactile sensor to measure

the contact point (this requires a minimal amount of pressure). Because friction

during sliding caused diÆculties with the tactile sensor (as discussed in Appendix C),

graphite was spread on the surface to lower the coeÆcient of friction so that higher

normal forces could be applied. Tactile sensor data is used to determine the direction

of the normal to the surface, so when the surface curves, the force applied to the

�ngertip changes direction. The PD control causes the �nger to move parallel to the
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surface with a particular velocity. (Desired positions are selected using the current

position and desired velocity.) For this control, the contact point must be known in

the WCS.

x = xf +RfnW ; (4.7)

where x is the contact point, xf is the position of the center of the �ngertip, Rf is

the radius of the �ngertip, and nW is the contact normal. All the vectors are in the

WCS.

The following vector equation expresses the force applied to the motors.

fpd = Kp(xdes � x) +Kv( _xdes � _x) (4.8)

In this equation, fpd is the force due to the proportional-derivative control, xdes

and x are the desired and actual contact point positions, and _xdes and _x are the

desired and actual velocities.

When exploring a surface, the goal is not necessarily to reach certain locations on

the surface. When searching for a feature, the goal is to move the �nger around on

the surface and go in di�erent directions. Thus, rather than specifying a particular

position that the contact point should attain, we de�ne a desired velocity and the

direction of travel. The desired position is determined from the desired velocity; at

each servo loop, the corresponding position can be calculated.

xdesk = xdesk�1 +
_xdes

!
; (4.9)

where ! is the servo frequency. When the desired velocity is changed, a linear ramp

is used to slowly increase the velocity to the desired value.

Kp and Kv are the Cartesian sti�ness and damping matrices. They are diagonal

matrices whose entries are the sti�ness in each of the Cartesian directions (x, y, and z).

The gain matrices are originally developed in surface coordinates so the that direction

perpendicular to the surface will have a gain of zero. By de�ning the matrices this

way, we are e�ectively including a selection matrix to apply the PD control law in

particular directions. kp and kv are the chosen scalar gains.
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KpS =

2
6664
kp 0 0

0 kp 0

0 0 0

3
7775

KvS =

2
6664
kv 0 0

0 kv 0

0 0 0

3
7775 (4.10)

Then, a similarity transform is used to convert the gain matrices into world coor-

dinates.

KpW = RSW
TKpSRSW

KvW = RSW
TKvSRSW (4.11)

The desired normal force magnitude, fdes, is also assigned. The desired force

vector is then determined from the contact normal:

fn = fdesnW : (4.12)

The open-loop normal force is added to the PD force to determine the total force at

the contact point:

ftotal = fpd + fn: (4.13)

In this equation, fpd is the PD force, fn is the desired normal force, and n is the

direction normal to the surface in the world coordinate system. A control loop could

certainly be used to regulate the normal force, however, this was unnecessary with

the current experimental setup. Gravity compensation is also applied, as discussed

in Appendix C.

With this control law in place, we can now consider the desired directions of

motion for the contact point. In local exploration, decisions about this motion are

based on sensed feature information.
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4.4 Local Exploration

Using the control law described in the previous section, a �nger can travel across a

surface with a constant velocity and normal force. During this motion, the �nger

may encounter a feature. There are two main phases of local feature exploration:

type detection and tracing. Type detection is a series of motions used to determine

whether the feature is a ridge, step, ravine, etc. Tracing is used to get an \outline"

of the feature so its overall geometry can be recorded.

4.4.1 Feature Type Detection

Let us assume that a �nger has encountered a feature and detection has been per-

formed using the method in Chapter 3, so that curvature features are recorded. It

is important to note that the direction of �nger travel during a search may not cor-

respond to the �rst principal direction of a feature, so the �nger can actually travel

over a feature without detecting it. Thus, it may be desired to perform type detection

even if it is uncertain whether the curvature is sharp enough to warrant designation

as a feature.

A ow chart can be used to describe a type detection algorithm, where the branch-

ing direction depends on previous discoveries. In this example, let us consider three

possible feature types, a convex cusp, a step, and and a ridge. Because it is possible

to de�ne an in�nite number of macro features, we will restrict the possible feature

types for simplicity. Figure 4.7 shows an example of a feature type identi�cation ow

chart using these three feature types.

Rather than using an explicit ow chart for identi�cation, the �nger can also move

over the surface (perhaps in a raster-scanning fashion) and record all the curvature

feature regions detected. These regions can then be pattern-matched against the

possible feature types for identi�cation purposes.

4.4.2 Feature Tracing

After the feature type has been identi�ed as a ridge, step, or cusp, the geometry of the

feature is further examined by tracing the feature boundary. Tracing is accomplished

by moving in the plane perpendicular to the contact normal when the �nger is on

a negative curvature feature. With only contact location sensing, it is diÆcult to

decide which direction to travel on this plane. However, when the nominal surface is
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Figure 4.7: Flow chart for feature type identi�cation. The possible features in this
example are a cusp, a step, and a ridge.



CHAPTER 4. FEATURE-GUIDED EXPLORATION 73

Figure 4.8: The direction of contact point travel during feature tracing is determined
by the intersection of a plane parallel to the local surface and a plane orthogonal to
the contact normal.

gently curving, one can also include the constraint of staying in the plane of travel

before the feature was encountered. The intersection of these two planes creates a

path through space that also traces along a negative curvature feature, as shown in

Figure 4.8. When tracing a feature, these planes should not be close to parallel, thus,

the path of travel will always be de�ned. The direction along this path can be chosen

arbitrarily.

While performing this tracing, it is possible for the �nger to lose contact with the

feature. At intervals, the �nger can re-approach the feature and �nd the curvature

feature regions again. During the tracing, it is important to keep track of locations

that represent the boundary of the feature. When the �nger moves away from the

feature in order to relocate a curvature feature, this data should be removed.

4.4.3 Feature Modeling with Shape Skeletons

Using feature data points obtained by tracing, the Medial Axis Transform (MAT)

of the feature can be identi�ed for macro features. The MAT is useful for modeling

and object identi�cation purposes, and, as we will see in the Section 4.5, for creating

global maps of features and feature regions.

The Medial Axis Transform

The medial axis is de�ned as the loci of centers of locally maximal balls (in 3D) or

disks (in 2D) inside an object. In other words, it is the set of the centers of balls or

disks that �t tightly into the object, touching the boundary at at least two contact

points. The medial axis is also known as a shape skeleton. Each point on the medial
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axis is associated with the radius of a locally maximal ball or disk. These medial axis

points, together with their associated radii, de�ne the MAT of an object. In this work,

the medial axis is used to de�ne the locations of features and is the most important

part of the transform. If the features are to be reconstructed, the entire MAT is

needed. In addition, only the 2D MAT of a surface will be considered here. While it

is possible to construct a 3D MAT of an object, it is not as useful in detecting and

mapping features for the context of haptic surface exploration with robotic �ngers.

According to the above de�nition, medial axis points are equidistant to the object

boundary and represent the innermost interior points. In 2D, these medial axis points

represent a set of continuous curves. The points where three or more of these curves

meet are called branch points. In 3D, medial axis points form a set of continuous 1D

or 2D points known as medial curves or medial surfaces. The edges where more than

two medial surfaces meet are called seams. A number of de�nitions related to the

terminology of the MAT are provided by Turkiyyah, et al.[91]. The medial axis for a

simple 2D object is illustrated in Figure 4.9.

An example of a medial axis that may be created for a feature is shown in Figure

4.10, although the maximal disk algorithm is not the way the medial axis is created

in practice for simulated noisy data.

It should be noted that while a medial axis can be found for macro features such

as ridges, ravines, bumps, and pits, it is not necessary to create a skeleton for features

with two or less curvature features. For a cusp or step feature, the �nger cannot trace

\around" the feature, it can only trace \along" it. The path obtained by tracing

along such a feature can be used as a pseudo-skeleton because this path basically

represents the shape of the feature.

Creating the Skeleton from Feature Data

There are two major skeletonization methods that can be used to extract the me-

dial axis transform of feature data, taken from medial axis algorithms for 2D image

data[10]. The �rst is region-based, where the input is usually an array of �lled im-

age data. In this \thinning" approach, pixels of images are iteratively thinned, or

equivalently, redundant pixels are successively deleted until a �nal skeleton is derived.

The second method is based on the boundaries of images. The boundaries are ex-

tracted from the image by edge detection and skeletons are generated directly from

the boundary data. The boundary technique is in general more eÆcient than the
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Figure 4.9: Example of the medial axis for a simple 2D shape.
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Figure 4.10: Example of the medial axis for a feature.
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region-based approach, however, there are issues due to noisy boundary data input.

Because the feature data is obtained by tracing, the data that must be used in

the MAT is the feature boundary. This is advantageous because boundary-based ap-

proaches are known to be more stable and less problematic than thinning methods[21].

Much of the overhead of the boundary approach is in the detection of a boundary of

the image and removal of excessive small branches due to noisy data[39]. Because the

portion of local exploration which is identi�ed as a \tracing" phase is well-de�ned,

the data taken during that phase can be separated from the rest of the tactile or

position data. This creates a clean group of boundary samples. Thus, the boundary

is already calculated, although we must still deal with the issue of noisy data.

Brandt and Algazi[10] and Ogniewicz[64] have used approaches in which bound-

ary points are used to �nd Voronoi diagrams in order to generate a discrete medial

axis. Pruning procedures are necessary to handle noise, errors in sampling, and for

hierarchical skeleton representation. We will now step through the basic medial axis

extraction algorithm from their work.

The algorithm begins with the creation of a Voronoi diagram from the boundary

data points. The Voronoi diagram is the partitioning of a plane with n points into

n convex polygons. Each polygon of the Voronoi diagram (also known as a Voronoi

polygon) contains exactly one data point and every point in a polygon is closer to

this point than to any other data point. Ogniewicz calls the Voronoi diagram of a

discrete set of boundary points the discrete Voronoi medial axis (DVMA). Brandt

showed formally that the DVMA approaches the continuous Voronoi diagram as the

number of boundary samples increases (Figure 4.11).

Once the DVMA has been found, the skeleton must still be extracted by pruning

away undesirable Voronoi polygon edges. There are many pruning algorithms that

can be used for this purpose. Brandt[10] presents a method where polygon segments

are deleted based on the absolute regeneration error and an empirically-determined

threshold. For feature detection based on tactile and position data, however, there

is a simpler pruning algorithm based on the length of the Voronoi polygon edges.

Given the velocity of the robotic �ngertip performing the exploration and the rate

at which data is sampled, there will be a minimum distance between samples at the

boundary of the feature. The results of pruning using this method are shown in

Figure 4.11. One can see that where there are data points that are particularly noisy

and far away from the main feature shape, unwanted skeleton arcs appear. These



CHAPTER 4. FEATURE-GUIDED EXPLORATION 78

Figure 4.11: As the number of boundary samples increases, the discrete Voronoi
medial axis (DVMA) approaches the continuous Voronoi diagram. The DVMA is then
pruned to get get a more accurate object skeleton. In this example, the boundary
samples are noisy and cause unwanted arcs in the �nal skeleton. These can be removed
using a length threshold.
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Figure 4.12: Examples of branching and non-branching features. If only non-
branching features are considered, unwanted skeleton arcs can be easily pruned away.

could also be pruned away, provided that the features under consideration do not

branch (Figure 4.12). Pruning is accomplished by removing the skeleton arcs which

are smaller than a threshold length, de�ned using the noise present in the data. Some

researchers[68] use the medial axis itself to determine if an object \branches," so the

choice of threshold will depend on the application.

This basic algorithm results in a single medial axis for features that are not signi�-

cantly curved on the surface. The threshold can be chosen to make the skeleton inside

of the boundary samples completely connected for a given sample spacing. However,

if the feature curves sharply on the surface, the algorithm will also �nd part of the

skeleton outside the region of the feature, as shown in Figure 4.13. In this case, the

connected skeleton with the most edges can be taken as the medial axis. With these

feature skeletons created, we can now consider methods for global exploration.

4.5 Global Exploration

In choosing the method for global exploration, one can consider the eÆciency and

amount of information obtained from di�erent algorithms. Depending on the goal of

the exploration and the nature of the features, various feature search methods will

perform di�erently. In this section, we address some issues for future work on global

exploration and the search for features.

4.5.1 Goal Feature Considerations

The goal of haptic exploration for �nding object features can fall into many categories.

For example, we may be looking for a type of feature, a speci�c feature, any feature
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Figure 4.13: When a feature turns sharply, extra skeletons are extracted using a
simple edge length threshold. The number of edges of disconnected skeletons can be
compared, and the shorter ones discarded.
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in a particular region, or all features. There is also the case where the �nger desires

to move from one point to another, and �nd any features along they way. For this

scenario, a motion based on Lumelsky's bug algorithms (1, 2 or 3)[48] can be used to

move towards a goal while tracing any features found along the way.

When searching for a particular type of feature, it is usually advantageous to ex-

plore each feature that is detected until that feature is either identi�ed as the goal

feature, or there is enough evidence to reject it as a possible match. This can be

shown by counter example: rejecting features that have not been identi�ed as the

incorrect type would waste any time that has already been spent exploring that fea-

ture. A probability parameter could be updated as the feature is explored: when the

probability that the feature is of the desired type becomes lower than the probability

that the goal feature would be more quickly found by moving to a new feature, that

feature could be temporarily rejected.

This would modify the general local exploratory procedures described in the pre-

vious section because the exploration needs to be carried out only far enough to make

a positive or negative type identi�cation. A similar approach can be taken when look-

ing for a speci�c feature (of a particular type and shape). First, some features can be

rejected automatically if the type does not match. Features with matching type must

be explored in more detail by feature tracing. One possible way of matching features

to a speci�c goal feature is pattern matching using the feature shape skeleton. One

could also compare the principal curvatures and spacing of curvature features on the

macro feature. Because the shape skeleton alone would not capture the \thickness"

of a ridge, this curvature feature region size and space could be used as additional

information for pattern matching.

When searching for a feature in a speci�c location, the global search should lead

the �nger to explore only in the area under consideration. Depending on the speci�c

application, one may want to explore fully all features that have any portion of their

boundaries in a particular area. For �nding all features, every feature should be fully

explored. However, the eÆciency of exploration may depend on the spacing of the

features on the object in comparison to the size of the robot �nger.
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4.5.2 Feature Spacing Considerations

Depending on the application and spatial frequency of the features, there is a trade-

o� between complete exploration of individual features (performing both of the ex-

ploratory procedures described above) and continuing exploration to �nd the next

feature. For a general application, where complete knowledge of each feature is im-

portant, the most eÆcient subsequent motion is to continue exploring each feature

that has been detected until its boundary has been completely traced. Given the

macro feature de�nition that the curvatures must be within a certain distance to be

considered part of the same feature, all curvature features on other macro features

will be further away than those on the current macro feature. Thus, more feature in-

formation can be obtained by continuing the current exploration, rather than setting

out on a search for new macro features. In addition, it may be desired to accomplish

complete feature tracing for creating skeletons for global feature mapping.

One way to compare the eÆciency of local versus global feature exploration is

to consider both large and small spatial distributions of features. For the context

of exploring with spherical robotic �ngers, a large distribution occurs when no two

di�erent features have points closer to each other than one �ngertip diameter. This

means that more information can always be gained by continuing to explore a current

feature until it has been fully traced. The robot �nger size can also be considered as

a measure of the quantization error in feature exploration. If features are too close

together, it is possible that the �nger will not be able to di�erentiate them, especially

if only contact location centroid data is available.

In other contexts, it may be desired to use the features themselves as way of deter-

mining spatial distribution. By comparing average feature length to average feature

spacing (shortest distance between closest points on two di�erent features), another

metric for spatial distribution may be obtained. While this method of assigning a dis-

tribution parameter may be desirable for object identi�cation and pattern matching,

it is not always directly relevant for the context of haptic exploration. From the point

of view of a robotic �nger, the only goal is to obtain as much relevant information as

quickly as possible.

Even for large spatial distributions, one can consider various weighting techniques

for deciding whether to continue exploring a current feature or move on to a new

search. For example, feature tracing may be computationally more expensive or

slower than the motion required to �nd a new feature. A weighted sum of the expected
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Figure 4.14: The global skeleton creates regions around features.

value of the new information found from continued exploration and the penalty for

the cost of doing tracing rather than searching for a new feature can be used to create

a decision parameter. A positive value of this parameter indicates that the best move

is to continue exploration, and a negative value indicates that a new feature should

be found. Such a parameter could also be used for deciding when a feature has been

completely traced. When the �nger moves near points that have already been traced,

the gain from continuing exploration in that area is low or zero.

In general, the robotic hand performing the exploration will not have a priori

knowledge of feature distribution. As exploration continues, a distribution parameter

can be updated and the exploration strategy modi�ed based on feature spacing.

4.5.3 Partitioning using Feature and Global Skeletons

After a complete local feature exploration has been completed, tracing data may be

used to start building a global map of features. As additional features are discovered

and explored, a global skeleton may be developed to partition the surface of the object

into regions as shown in Figure 4.14. This global skeleton is similar to the concept of

a negative medial axis, which is the medial axis formed from data points consisting

of the previously de�ned (feature) medial axes.

Planning using the global medial axis is left as future work. However, there are

several key planning applications that will be described here. One important use of
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this partitioning is to evaluate the spacing of the features. The minimum radius of

the disks along the medial axis represents the smallest clearance, and therefore the

minimum spacing, among objects. Given di�erent feature spacings, various global

exploration or manipulation strategies may be invoked. In addition, the global medial

axis may be such that it bounds regions on the surface. Larger regions that do not

closely bound a feature (to within a �ngertip diameter) may need to be explored

further to ensure that no features were missed.

If the goal is to avoid features, the trajectory of the global skeleton depicts the

safest navigation path that is the farthest from all features. Thus, the relationship

between the size of the �nger and the radius for each locally maximal disk tells us

whether the �nger can navigate without hitting any features.

Creating a Global Skeleton

Given the medial axis for each feature, the negative MAT can be calculated by taking

the locally maximal balls between the medial axes. This amounts to taking the MAT

of the feature medial axes. As shown in Section 4.4.3, however, algorithms based on

the Voronoi diagram of sample data are particularly straightforward for boundary

data. Thus, we will consider another simple algorithm based on the Voronoi diagram

to determine a simple approximation to the negative MAT of the features. The basic

steps in this algorithm are shown in Figure 4.15.

The algorithm for obtaining the global medial axis begins with the points on the

DVMAs of the features obtained as described in Section 4.4.3. The Voronoi diagram

of these medial axes is constructed. Similar to the method for determining the feature

medial axes, a number of pruning algorithms can be used to extract the skeleton from

the Voronoi diagram. However, the nature of the contact and position data obtained

during exploration allows for a new, simple extraction method.

One advantageous property of the local feature exploration algorithm is that fea-

tures are naturally segmented during the exploration process. When the �nger en-

counters a feature, that feature is explored fully and all the data points observed

during this exploration can be attached to a structure for that feature. When a dif-

ferent feature is explored, the new data points are associated with the new feature.

Therefore, each boundary sample is associated with a single feature. This property is

used in the extraction of the global medial axis from the Voronoi diagram by consider-

ing only the Voronoi polygon edges which are shared by two sample points associated
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Figure 4.15: The global skeleton is approximated using the Voronoi diagram of the
medial axes of the features. It is extracted from the Voronoi diagram by considering
only the polygon edges which correspond to medial axis points from two di�erent
features.



CHAPTER 4. FEATURE-GUIDED EXPLORATION 86

with di�erent features. By using only these polygon edges, only segments which are

equidistant from two di�erent features are considered.

This technique also eliminates some medial axis arcs that might be created using

the traditional negative MAT calculation. A true negative MAT calculation would

include points that are equidistant from multiple points on a single feature. While

this information may be useful for some applications, such as navigation, it would

distort the description of feature spacing or the division of a surface into discrete

regions surrounding di�erent features. By using Voronoi polygon edges that are only

shared between points on di�erent features, we obtain a simpler extraction algorithm

and a useful global medial axis.

4.6 Conclusion

This chapter addressed issues in the planning and execution of local and global ex-

ploratory procedures for �nding features on a surface in 3D. Using the feature def-

initions presented in Chapter 3 and local exploratory procedures, features can be

identi�ed by type and geometry. Feature geometry is recorded by tracing around or

along the length of the feature.

The control for moving the �nger over the surface at a constant velocity and normal

force is presented. This control can be used both during the search for a feature and

during feature tracing. Using tactile sensor data, the surface normal is continuously

updated, and the motion and normal force trajectories are modi�ed. During feature

tracing, the contact location and nominal surface orientation are used to determine

the direction of motion when only contact location is available for feedback.

Using the control described above, feature type identi�cation can be performed by

using a series of motions over and around the feature. Then, the feature is completely

traced in order to build a shape skeleton that can be used for pattern matching or

global feature mapping. Using this global feature mapping, various methods for global

exploration have been discussed, their use depending on the goal of the exploration

and spatial feature distribution.



Chapter 5

Conclusions

This Chapter concludes the thesis by providing a summary of results obtained in the

preceding chapters, a description of the major contributions and conclusions drawn

from those results, and suggestions of areas for future work.

5.1 Summary of Results

The most signi�cant result produced by this research is a method for detecting and

identifying surface features for the context of haptic exploration with robotic �ngers.

This included the formulation of the de�nition of a feature, and the development of

feature-guided exploration. Two levels of feature are de�ned: curvature features and

macro features. Curvature features are areas where the curvature of the surface ex-

ceeds the curvature of a round robotic �ngertip exploring the surface. Macro features

are patterns of curvature features that can describe ridges, bumps, ravines, and more

complicated 3D features. It was shown that the parallel surface traced by a �ngertip

traveling over a feature can be used to detect and identify features, and that this path

has some intrinsic properties that facilitate feature detection.

It is noted that the de�nition of a feature is highly context-sensitive, depending

on both the application and the viewer. While we have tried to leave the application

exible, the viewer is limited to the context of robotic haptic exploration. Robotic

�ngers can come in many shapes, however, a spherical �ngertip is an excellent shape

for exploration and mimics the geometry of the human �ngertip. By choosing this

shape of �ngertip, our \viewer" is selected and features can be precisely de�ned.

Based on the de�nition for certain macro features, algorithms were developed for

87
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active, feature-guided exploration of these features. As the �nger explores a feature,

a skeleton representation may be constructed to describe the feature shape and its

location on the surface. An algorithm was presented for extracting the skeleton,

or medial axis approximation, from the Voronoi diagram of the feature boundary

samples.

Global exploration techniques for a single robotic �nger were also considered. De-

pending on the spatial frequency and size of features, di�erent exploration strategies

may be invoked. When the features are spatially distributed so that there is more

than one �ngertip diameter between them, it is most advantageous to continue ex-

ploring any feature that is found in order to extract the most feature information in

the shortest amount of time. When features are very close, it may be more eÆcient

to \raster-scan" a surface with the �nger. Assuming the features are distributed so

that they can be explored individually, a global skeleton may be developed using the

Voronoi diagram of the skeleton points of the features. A useful global skeleton can

be extracted from the Voronoi diagram by considering only polygon edges that are

shared by data points from di�erent features. This allows the surface to be divided

into discrete regions for mapping, planning, or pattern matching purposes.

This research also recognized the importance of combining manipulation and ex-

ploration. Manipulation cannot proceed without exploration to determine unknown

object properties, primarily shape and friction. Global exploration cannot be accom-

plished with most robotic hands unless some manipulation is used to reposition or

reorient the object to access di�erent areas of the surface.

5.2 Review of Contributions

The major contributions of this research are summarized here, with rationales based

on the above summary of results.

� A procedure for combined manipulation and exploration of an unknown object.

Chapter 1 developed a method for accomplishing this with a minimal con�gu-

ration, two active �ngers and a passive palm. The procedure is extendable to

multiple �ngers and di�erent object shapes, restricted only by workspace and

grasp stability limitations. This procedure emphasizes the importance of the

link between manipulation and exploration.
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� The de�nition of a feature in the context of haptic exploration with robotic

�ngers. A feature is de�ned as a region, or pattern of regions, where at least

one of the principal curvatures of a surface is greater than that of the robotic

�nger. It was shown through simulations and experiments that this de�nition

can be used to identify features. In addition, the parallel surface created by

a robotic �nger traveling over a feature can be used for feature detection and

identi�cation, thus, tactile sensor data is not necessary for this purpose.

� Algorithms for performing feature-guided exploration for the detection and iden-

ti�cation of features with robotic �ngers in three dimensions. A local explo-

ration procedure was developed and tested that enabled a robotic �nger to

identify and trace around a ridge feature.

� Algorithms for using shape skeletons for storing feature information and global

surface mapping. Voronoi diagrams are used to develop an approximate medial

axis for the features. In addition, the global distribution of features can be

mapped by a global skeleton, created by taking the Voronoi diagram of the

feature skeleton points and removing Voronoi polygon edges that are not shared

by skeleton points from di�erent features.

The above results and contributions form a cohesive procedure for haptic explo-

ration of surfaces for the purpose of feature identi�cation. The general procedure

and feature de�nitions can be extended to many di�erent types of robotic hands and

objects. Feature-guided exploration allows for the creation of a skeleton model, useful

for object identi�cation, pattern matching, and visual or haptic representation.

5.3 Future Work

There are many intriguing avenues for this research. Some possibilities are direct

extensions of the work in this thesis, while others move some of the concepts developed

here into di�erent domains.

Following directly from this thesis, it will be important to develop planning meth-

ods for global exploration. Using the global skeleton that describes the distribution

of features, the surface may be divided into regions that logically divide the surface.

If there are regions that are larger than expected, or regions which have a feature

that is not near a region boundary, it may be desired to continue local exploration in
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that region to look for undiscovered features. One may also desire to develop a global

exploration algorithm that proves that all features of a minimum size will be found.

EÆciency of various feature search techniques can also be investigated.

In performing the experiments for this thesis, it became evident that, while the

state of tactile sensing has certainly improved over the last decade, there is still

no existing tactile sensor that is ideal for haptic exploration. In particular, haptic

exploration involves sliding or dragging a �ngertip over a surface. While there exist

tactile sensors that are spherical and tactile sensors that can withstand dragging,

there is no single sensor that is accurate and has both properties. Thus, new tactile

sensors could be designed with exploration in mind. In addition, the application of

exploration may also point towards appropriate robotic hand or �nger designs.

Moving on to broad extensions of this work, one particularly interesting topic is

the development of a reality-based modeling system that can measure other types of

object properties. While this thesis focuses on surface shape and features, there are

many other properties that can be explored, such as mass/inertia, friction, tempera-

ture, texture, and sti�ness. Some of these properties, such as texture, are concepts as

diÆcult to de�ne as features. While roughness has been characterized using fractal[65]

and stochastic[28, 78] methods, texture is still a nebulous concept and is therefore

diÆcult to detect, identify, and model. Some other properties, such as friction[71]

and impact dynamics[23, 66], have been automatically identi�ed, however, they have

not been included as part of a single data acquisition system.

In performing this reality-based modeling, one should consider the application of

the model. One use of particular interest is haptic display, for virtual environments

that display to the human sense of touch. The shapes and features explored in this

thesis could be modeled in such a way as to be easily used for haptic rendering. For

a full reality-based modeling system, multiple modes (including sight, vision, touch,

etc.) can be integrated for data acquisition and display. Even with touch alone,

there are a number of possible properties to integrate. For example, features may

be combined with a global shape model as local shape perturbations. The feature

exploration techniques addressed in this thesis have many possible extensions into

the areas of exploration planning and object modeling.



Appendix A

Kinematics of Contact

For the haptic exploration procedure described in Chapter 2, it is essential to un-

derstand the kinematics of rolling and sliding manipulation. During manipulation

phases, there is rolling contact between the �ngers and the object. During explo-

ration phases, there is a combination of rolling and sliding with one �nger and static

contact with the others. During dexterous manipulation, it is necessary to keep track

of the contact points between the object and the �nger (Figure A.1). This appendix

presents a summary of the kinematics of manipulation with rolling and sliding con-

tacts, based largely on the work of Montana[57, 58], Kerr and Roth[40], and Cai and

Roth[12].

In addition, the feature de�nition presented in Chapter 3 requires a di�erential

geometry surface description. In the development of the kinematics of contact, a

surface description is also described that will be useful for the development of a

feature de�nition.

A.1 A Di�erential Geometry Surface Description

The kinematics of rolling and sliding motion begin with the equations of contact.

From di�erential geometry, we obtain a surface description that can be used to un-

derstand the object geometry for a coordinate patch near the contact point. The

following de�nitions are useful in describing contact kinematics[84, 58].

De�nition 1 A coordinate patch S0 for a surface S � <3 is an open, connected

subset of S. There exists an open subset U of <2 and an invertible map f : U !

91
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Figure A.1: A typical dexterous manipulation problem: Moving an object from con-
�guration A to con�guration B while keeping track of contact point locations.

Figure A.2: A coordinate system (f; U) for coordinate patch S0 of surface S.

S0 � <3 (Figure A.2) such that the partial derivatives fu(u) and fv(v) are linearly

independent for all u = (u; v) 2 U . The pair (f; U) is a coordinate system for S0.

De�nition 2 A Gauss map for a manifold S is a continuous map g : S ! S2 � <3

such that for every s 2 S, g(s) is perpendicular to S at s. When S is the surface of

a solid object, the Gauss map is an outward normal map if it points outward.

De�nition 3 Consider a manifold S with a coordinate patch S0 that has a coordinate

system (f; U). This coordinate system is orthogonal if fu(u) �fv(u) = 0 for all u 2 U .
When the coordinate system is orthogonal, the normalized Gauss frame (Figure A.3)

is de�ned at at point u 2 U as the coordinate frame with origin at f(u) and coordinate
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Figure A.3: The Gauss frames for some points on a surface and a view of the Gauss
frame coordinate axes.

axes

x(u) =
fu(u)

jjfu(u)jj
y(u) =

fv(u)

jjfv(u)jj
z(u) = g(f(u)); (A.1)

where g() gives a normalized vector.

De�nition 4 Given a manifold S with Gauss map g, coordinate patch S0, and an

orthogonal coordinate system (f; U), we can de�ne the curvature form K (or curvature

matrix), torsion form T, and metric M. At a point s 2 S0, the curvature form K is

de�ned as the 2� 2 matrix

K =

2
4 x(u)T

y(u)T

3
5 h zu(u)

jjfu(u)jj
zv(u)
jjfv(u)jj

i
: (A.2)

where u = f�1(s). The torsion form T at s is the 1� 2 matrix

T = y(u)T
h

xu(u)
jjfu(u)jj

xv(u)
jjfv(u)jj

i
: (A.3)

The metric M is de�ned at s as the 2� 2 diagonal matrix

M =

2
4 jjfu(u)jj 0

0 jjfv(u)jj

3
5 (A.4)

For example, we will consider the calculation of these surface descriptors for a

sphere, which can be de�ned by the set
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U = f(u; v)j � �

2
< u <

�

2
;�� < v < �g (A.5)

and the map

f : U ! <3; (A.6)

(u; v) 7! (R cos u cos v;�R cos usinv; R sin u): (A.7)

The sphere can be viewed as the surface of a solid ball, so the outward normal

map is

g : S ! S2: (A.8)

Using the de�nitions of the coordinate axes of the Gauss frame, we can calculate

these vectors as

x(u) =

2
6664
� sinu cos v

sin u sin v

cos u

3
7775

y(u) =

2
6664

cos u cos v

� cos u sin v

sin u

3
7775

z(u) =

2
6664
� sin v

� cos v

0

3
7775 : (A.9)

If one considers the sphere to be the surface of the earth, the x- and y-directions

are North and West, and the z-direction is up. The curvature matrix, torsion form,

and metric are calculated from the map and the coordinate axes:

K =

2
4 1

R
0

0 1
R

3
5

T =
h
0 � tanu

R

i
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M =

2
4 R 0

0 R cos u

3
5 : (A.10)

A.2 Contact Kinematics

In order to develop the equations of contact, we now consider two rigid bodies that are

moving while maintaining a single contact with each other. Object i has a surface Si

(assuming that the surface is a surface patch for simplicity), a series of local coordinate

systems (fi; Ui) and a Gauss map gi. Each object has a reference frame �xed on the

object, Cri, and a reference frame at the contact point Cli that is de�ned relative to

the �xed frame. ci(t) 2 Si is the position of the contact point at time t relative to Cri.

In general, ci will not remain in a single coordinate patch, so we will restrict motions

to an interval for which ci(t) remains in a contact patch that can be described by a

single local coordinate system and Gauss map.

Now consider that there are in general �ve degrees-of-freedom if a rigid body is to

remain in single point contact with another rigid body. The total degrees-of-freedom

for a rigid body is six, and the contact constraint subtracts one of those degrees-of-

freedom. Therefore, the contact equations must account for �ve degrees-of-freedom.

The contact point coordinates relative to the coordinate system (fi; Ui) can be

calculated from ci as

ui(t) = fi
�1(ci(t)) 2 Ui: (A.11)

This equation constrains four degrees-of-freedom of the relative motion of the two

objects because ui(t) has two coordinates, and i = 1; 2 for two objects. As Figure

A.4 illustrates, u1(t) and u2(t) change during rolling and sliding motion from u1 and

u2 to u
0
1 and u

0
2, respectively. The �fth degree-of-freedom is constrained by the angle

of contact,  (spin), between the contact coordinate frames on the two objects.

The motion of an object relative to another can be described by the relative

velocities of the contact frames on the two objects. The translational velocities are

described by vx, vy, and vz. Similarly, the components of rotational velocity are !x,

!y, and !z. These velocities are measured in the contact coordinate system of one

of the objects, and they will be equal and opposite to the velocities in the contact

coordinate system of the other object. Once again, we have six degrees-of-freedom,

but in order to maintain contact, there is a constraint that vz = 0. Montana[57]

developed a set of equations that can be used to transform relative object velocities
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Figure A.4: The motion of contact frames for rolling and sliding contact. The contact
frames were at u1 and u2 for objects 1 and 2 before motion occurred. The new contact
frames are u01 and u

0
2.

Figure A.5: Contact variables. (Adapted from Montana[57].)

to contact point motion (Figure A.5), where the subscripts on the K, T , and M

matrices refer to the object number.

_u1 = M1
�1(K1 + ~K2)

�1

0
@
2
4 �!y

!x

3
5� ~K2

2
4 vx

vy

3
5
1
A (A.12)

_u2 = M2
�1R (K1 + ~K2)

�1

0
@
2
4 �!y

!x

3
5 +K1

2
4 vx

vy

3
5
1
A

_ = !z + T1M1 _u1 + T2M2 _u2

0 = vz;
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where

R =

2
4 cos � sin 

� sin � cos 

3
5 (A.13)

~K2 = R K2R 

The contact equations are non-holonomic, meaning that that they are non-integrable:

the constraint is on velocity rather than position. Such a non-holonomic system is

problematic because it is diÆcult to plan manipulations without being able to inte-

grate to �nd positions. Thus, much of the experimentally successful work in multi-

�ngered manipulation has been done for planar rolling and sliding, where the contact

equations become holonomic. This reduction to a holonomic system is described in

Chapter 2.



Appendix B

Smoothing Tactile Data Using

Noise Type

The position data obtained from tactile sensors in robotic applications are typically

noisy due to both the motion of the robot supporting the sensor and the construction

of the sensors themselves. In order to extract the location of surface features from such

data (requiring a second derivative operation), a smoothing �lter must be applied.

This Appendix presents a comparison of several smoothing techniques. First, a �2

(Chi-squared) test was performed to con�rm that the noise in the data was Gaussian.

Next, several di�erent �lters were considered: average, median, dual point, Gaussian,

and Wiener. Finally, a feature detection algorithm was implemented for rating the

success of the appropriate smoothing �lters with di�erent �lter parameters. Results

of the feature detection scheme on the �ltered data are presented for comparison of

the e�ectiveness of the various �lters.

One can observe the noise in data from Figures B.1 and B.2. Data was obtained

from sliding the �nger over a small bump (created by stretching a 0.65mm diameter

wire over an angled planar surface). From the zoomed out view (Figure B.1), it is

obvious where the bump is located. However, the noise present in the zoomed in view

(Figure B.2) makes automatic feature detection diÆcult.

B.1 Noise Analysis

In order to determine which �lters might be appropriate for smoothing the tactile

sensor data, a �2 test was implemented. The �2 test is a goodness-of-�t measure

98
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Figure B.1: Tactile data.
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Figure B.2: Magni�ed view of tactile data.

that can be used to test the probability that a sample of data is or is not normally

distributed[7, 55].

The �rst step in performing the �2 test is to extract the noise from the data.

The noise may be observed as x position vs. y position or a combination of x vs. t

(time) and y vs. t. For the tactile data in this work, �ltering the position variables

separately parameterized by time is more appropriate, given the way �lters must be

applied. Many of the �lters, such as the Gaussian �lter, require that a window is

convolved along the signal. It is diÆcult to convolve at equidistant points along a

2D path such as the (x; y) tactile data. However, because the data was obtained

at constant time intervals, the convolution (and therefore smoothing) can be done

separately along the x and y directions with respect to t. In addition, the noise arises

over time, not as a function of the relationship between x and y. Thus, all the noise

analysis was performed twice, on both the x and the y data.

Beginning with a portion of the data with no features (which should be a straight

line), a least-squares line �tting algorithm was used to �t the data. The noise was

determined from the line coeÆcients (a, b and c) returned by the algorithm. The

equation of the line is

c = au+ bv; (B.1)

where u and v are the independent variables. The noise was calculated from the
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Figure B.3: Skew in noise resulting from a linear �t to the tactile data.

coeÆcients using the actual (u; v) data points in the equation

noise = au+ bv � c: (B.2)

However, a linear �t was not appropriate for this data, as evidenced by the obvious

skew in the noise in Figure B.3.

The fact that a linear �t was not appropriate can be explained by errors in the

robot and tactile sensor calibration. Although the contact point moved in a straight

line (because the surface was at), the sensed path is slightly curved. This problem

was solved by applying a second order polynomial �t. Using the coeÆcients returned

from the �t, predicted values versus time were obtained and subtracted them from

the original data to obtain the noise. The noise was no longer skewed, as is shown in

Figure B.4.

Using the noise data, the mean and standard deviation (�) values were obtained.

Then the noise was divided into bins to create a histogram. A uniform bin size was

used, estimated from the time scale and minimum and maximum noise values. After
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Figure B.4: Accurate noise resulting from a second order polynomial �t to the tactile
data.
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variable mean � �2 value normal?
x 1:1282e�17 8:9044e�5 11:9320 95% sure
y �3:2531e�18 1:0209e�4 10:6652 95% sure

Table B.1: Noise analysis parameters for tactile data.

calculating the observed frequency in each bin, the z-value was determined by

z =
(x� �x)

�
: (B.3)

Next, the distribution was calculated from

F =
Z z

�1

e
�z2

2p
2�
dz: (B.4)

The expected frequency in each bin was then calculated and the �2 value summed.

The results of the �2 tests were 11.9 for x and 10.7 for y. The 95% con�dence value

for a normal distribution is 11.07. Since both �2 values are near this, we can say

that the noise is approximately Gaussian, or normally distributed. Table B.1 lists the

values of various noise analysis parameters for the x and y variables.

The results of this noise analysis show that a smoothing technique aimed at nor-

mally distributed noise should work well on this data. The Gaussian and Wiener

�lters should be particularly e�ective, the average �lter less so, and the median �lter

and dual-point smoothing techniques not very e�ective.

B.2 Curvature Calculation and Feature Detection

Algorithm

To provide an objective comparison of the e�ectiveness of the various smoothing

algorithms, a feature detection algorithm was implemented based on the algorithms

developed in Chapter 3. The output of the algorithm is the number of features

detected and their locations.

The calculation of curvature is extremely sensitive to noise. The computation was

approached in several di�erent ways. One (unsuccessful) method was to compute

the circle passing through three points, and take the inverse of the circle's radius of

curvature. This led to an extremely noisy curvature computation. A much better
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way is to use the time derivatives of the x and y coordinates[80].

k =
x0y00 � y0x00

(x02 + y02)
1:5 (B.5)

Recall that the purpose of this curvature calculation is to compare smoothing tech-

niques on the original data, so smoothing in the feature detection stage was avoided

as much as possible. However, some curvature smoothing could not be avoided in

order obtain reasonable curvature plots, as is shown in the feature detection steps

below:

1. The inputs are the �ltered x and y data.

2. Remove some of the points (every n points), because there is more data than

necessary.

3. Calculate the �rst and second derivatives using surrounding points

x0 = x(i + 1)� x(i� 1) and x00 = x0(i + 1)� x0(i� 1)

4. Determine a modi�ed curvature: k = x0y00 + y0x00. The denominator of the

regular curvature equation is eliminated because it causes a large amount of the

noise and does not provide necessary information.

5. Smooth the curvature a small amount with a Gaussian �lter.

6. Curvature thresholds are set for feature detection.

7. Positive and negative feature regions are detected, and their ranges and maxi-

mum curvature points are recorded.

The feature detection scheme was tested on two sets of simulated data with Gaus-

sian �ltering, a square bump (Figure B.5). The plot of the curvature is also shown,

with the feature regions marked.

B.3 Smoothing Techniques

Several di�erent soothing techniques were studied and compared as methods for �l-

tering tactile data: the average �lter, median �lter, dual point �lter, Gaussian �lter,

and Wiener �lter.
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Figure B.5: Top: A square bump feature, before and after Gaussian �ltering. Bottom:
Feature detection for the square bump feature.
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Average Filter

An averaging algorithm takes a 1D vector and a window size as inputs. It calculates

the average of the points within the window, and uses the average value as the value

of the new point. The window size can be adjusted to change the result to get a

smoother curve. However, if the window size is too big, features in the tactile data

may be lost, so the window size needs to be adjusted. For example, if the window

size used is 3, this algorithm calculates the average between consecutive points a0, a1

and a2, and the result is a01.

a01 =
a0 + a1 + a2

3
(B.6)

This algorithm is simple, fast, and is easy to implement. However, it smoothes

sharp corners more than other methods because of the equal weighting given to all

the points within the window.

Median Filter

The median �lter is a non-linear �lter useful for removing spurious random noise[90].

This �lter is most applicable to signals where the noise can be characterized as \salt-

and-pepper" or impulsive noise. For example, suppose the position data is constant

over time. If some large spurious noise is added to random position values, this will

almost, if not completely, be removed by a median �lter with a large enough window.

As shown from the noise analysis in the Section B.1, the noise in the tactile data

is not multiplicative, it is additive Gaussian noise. Thus, the median �lter does

not perform as well as the Gaussian and Wiener �lters, which are designed to �lter

additive noise.

Dual Point Filter

The dual point algorithm is a variant of the mid-point algorithm, and is studied in the

environment of smoothing polygons. Dual point smoothing takes in the coordinates

of neighboring points in space and replaces them with the 1
4
and 3

4
points on the line

formed by the two original points. Advantages of this algorithm include that it is fast,

simple, and the complexity is O(kn) for k iterations. The disadvantages are that it

increases the number of vertices and the space complexity is O(2kn) for k iterations.

The dual point has poor performance on tactile data because it is meant for

polygon smoothing, where it smoothes out corners. In the intended application of
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the dual point algorithm, the raw data will have distinct corners and the x and y

coordinates of the points will both increase monotonically with respect to time. In

tactile data, neither of these two are necessarily true. Thus, dual point �ltering is

not an appropriate method for smoothing tactile data.

Gaussian Filter

A Gaussian �lter, essentially an averaging �lter with weights, is characterized by �, a

standard deviation, and a �lter window size. The Gaussian �lter weights the current

data point the most and assigns decreasing weights to the points farther away from

the current point. The rate of this decrease in weights is de�ned by �, creating a

low-pass �lter.

The Gaussian �lter is a good match to data characterized by additive noise. How-

ever, the impulsive noise is only di�used, not removed. Additionally, the frequencies

common to the signal and noise are lost[90]. This means that, since noise is normally

high frequency (as it also is in tactile data), the high frequencies of the data are

lost. Thus, sharp transitions are blurred. (However, due to the tapered shape of the

Gaussian, sharp transitions are not normally smoothed as drastically as when using

an average �lter.) Thus, is is possible that the Gauss �lter is not the optimal �lter

because the sharp transitions of of the data near a feature can be smoothed beyond

recognition for the feature detection algorithm.

Wiener Filter

A Wiener �lter is characterized by the signal and the signal noise. As with the

Gaussian �lter, it essentially performs a low-pass �lter{with the taper of the �lter

being de�ned by the noise and the signal. A Wiener �lter is suited well for additive

zero-mean noise. Since the data noise (see Section B.1) is characterized by additive

zero-mean Gaussian noise[69], the Wiener �lter was expected to perform well.

The Wiener �lter should be superior to the Gaussian �lter since, in the frequency

spectrum, the Wiener �lter immediately begins to taper o� at the frequency where

the noise over powers the signal. Additionally, the rate at which it tapers o� is

proportional to the power of the signal. (In contrast, the Gaussian �lter tapers at

a random frequency (as de�ned by �), and the rate of taper is not appropriately

matched to the signal.)
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B.4 Filter Experimental Results

The feature detection scheme described in Section B.2 was applied to the appropriate

smoothing techniques with di�erent input parameters (window size, �, etc.). Because

the noise in the tactile data was identi�ed as normal, or Gaussian, the Gaussian and

Wiener �lters were determined to be most appropriate.

The �lters were all applied to the same set of data, which included a bump so

that there were three curvature features: two negative and one positive. The actual

locations of the features, with position parameterized by time, were 90 (negative),

105 (positive), and 112 (negative). The di�erent smoothing techniques were rated by

adding the number of false positive and false negative curvature feature identi�cations

occurring from using the test �lter and the curvature calculation/feature detection

scheme.

The �lter which allowed most accurate feature identi�cation were a Gaussian �lter

with a window of 25-40 and a � of 5-10 and a Wiener �lter with a window of 35-40.

An example of the successful feature detection is shown in Figure B.6 for the case with

Gaussian �ltering, a window of size 25 and � = 8. This plot illustrates a borderline

case, where one of the features is almost not detected.

B.5 Summary

In this appendix, algorithms were described for smoothing tactile data. A noise anal-

ysis was performed to verify that the noise was normally distributed. Several di�erent

smoothing algorithms were implemented and tested. A feature detection scheme was

designed to facilitate an objective comparison between smoothing techniques. It was

found that the Wiener and Gaussian �lters were most appropriate given the noise in

the tactile data, and performed best when used with particular parameter values for

window size and �.
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Figure B.6: Feature detection with real data smoothed with a Gaussian �lter.



Appendix C

A 3DOF Robotic Finger with

Tactile Sensing

This appendix describes the testbed hardware used for tactile sensing in Chapters 3

and 4, and the three-degree-of-freedom robotic �nger used for active exploration in

Chapter 4.

C.1 The Optical Waveguide Tactile Sensor

The Optical Waveguide Tactile Sensor (OWTS) was developed by Maekawa, et al.[50,

51, 52] at the Mechanical Engineering Laboratory in Tsukuba, Japan. Several gen-

erations of the sensor were developed, continually improving accuracy and miniatur-

ization with each newly developed prototype. Based on the work by Maekawa, et al.,

this section describes the function of the latest sensor and how it is used to calculate

contact information for haptic exploration.

C.1.1 Sensor Function

The OWTS is an optical sensor that can detect the point where an object contacts its

hemispherical surface. One of the major elements of this sensor is the hemispherical

optical waveguide made of a glass shell. When light is injected by an LED at the

edge of this shell, total internal reection is restricted to the inner surfaces of the

glass. Reection conditions are modi�ed when an object contacts the surface of the

glass, resulting in light reected toward the interior of the sensor. A silicone rubber

cover over the glass shell protects the surface, improves elasticity for gripping, and

109
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Figure C.1: Interior structure of the Optical Waveguide Tactile Sensor. (Adapted
from [50].)

Figure C.2: Exterior of the Optical Waveguide Tactile Sensor, with and without the
silicone rubber cover.

provides a uniform reection that does not depend on the type or color of the object

in contact. Inside the shell, light travels through three lenses and an aperture to

the sensing mechanism, a position sensitive detector (PSD). The PSD is an analog

sensor that measures the total incident light and the centroid of incident light in

x-y Cartesian coordinates. Earlier versions of the tactile sensor used a CCD camera,

however, this resulted in a larger �ngertip and longer image processing time. Figures

C.1 and C.2 show the inside and outside of the latest version of the sensor.

C.1.2 Calculating Contact Point

The optical input on the surface of the PSD is determined using the detection coor-

dinate system shown in Figure C.3. The outputs of the PSD are voltages v1, v2, v3,

and v4. These outputs are used to �nd the location of the contact in the detection
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Figure C.3: The sensor and detection coordinate systems, adapted from [50].

coordinate system, (xdc ; y
d
c ). Calibration factors xdo and y

d
o are used to compensate for

the deviation between the location on the PSD surface that corresponds to the pole

of the hemisphere and the electrical center of the PSD. L is the length of the side of

the square PSD.

xdc =
�
v1 � v2 + v3 � v4

v1 + v2 + v3 + v4
� xdo

�
L

2
(C.1)

ydc =
��v1 + v2 + v3 � v4

v1 + v2 + v3 + v4
� ydo

�
L

2

The contact point on the spherical sensor surface can then be calculated from the

contact point in the detection coordinate system in spherical coordinates.

�sc = tan�1

 
ydc
xdc

!
(C.2)

�sc = K
q
xdc

2 + ydc
2
;

where K is a scale factor providing the relationship between the two coordinate

systems.

For the purposes of haptic exploration, the contact point location on the surface

of the sensor and the normal vector can be found using the angles de�ned above and

the radius of the �ngertip, R.
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xsc =

2
6664
R cos�sc sin �

s
c

R sin�sc sin �
s
c

R cos �sc

3
7775 (C.3)

nsc =

2
6664
cos�sc sin �

s
c

sin�sc sin �
s
c

cos �sc

3
7775

Because the relationship between the sensor and detection coordinate systems is

not linear with the latest version of the sensor, calibration is needed to compute nsc

from the detected point (xdc ; y
d
c ). The maximum sampling rate is approximately 5kHz,

well over the 1kHz servo loop used in the haptic exploration experiments in this thesis.

The resolution of the sensor is limited by the 12-bit A/D converter used in reading

the voltage signals. However, due to noise, the actual resolution is approximately

�0:5mm.

C.1.3 Advantages and Disadvantages

One of the primary advantages of the OWTS is its spherical shape which gives it

3D contact sensing capability. This makes the OWTS ideal for active explorations

that require three-dimensional contact point information. Another major advantage

of this device is size. With a diameter of approximately 16mm, the sensor is on the

order of the size of a human �ngertip. Due to the analog PSD used for sensing contact

location by reected light, the sensor can also read and transmit contact data very

quickly, at over 1kHz. There is also no hysteresis, making fast readings for di�erent

contact locations very accurate. A �nal advantage is its low weight, 27g. This makes

it ideal for mounting on the end of a small robot �nger.

While the OWTS is excellent in comparison to many other tactile sensors at the

time of this writing, it also has a number of areas that need improvement. First,

the sensor is not linear; it must be calibrated. Calibration is not an easy task be-

cause spherical contact locations must be accurately determined. The most important

problem with this sensor is the pulling of the plastic sheath when undergoing sliding

motion over a surface. Due to friction between the �ngertip and surface, the rubber

gets pulled over a patch of the glass that is larger than, and not centered at, the actual
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contact location. This can be considered a form of hysteresis, and was corrected for

in the experiments by releasing the normal force holding the �nger against the object

at intervals to get a correct contact location reading. For some experiments, graphite

was spread on the �ngertip and object to lower the coeÆcient of friction between the

two surfaces. This helped to prevent the pulling of the rubber cover that resulted in

false contact location readings.

C.2 The 3GM as a Robotic Finger

For the haptic exploration experiments, the OWTS was mounted on a 3DOF robotic

�nger, the 3GM from Immersion Corporation[27]. This �nger was originally developed

as a haptic interface for endoscopic sinus surgery simulation[87], and has also been

used in experiments for vibration feedback in virtual environments[67].

C.2.1 Hardware

The 3GM has three degrees of freedom (DOF), each one actuated with a DC motor

and measured with an optical encoder. The well-conditioned workspace of the device

is trapezoidal, approximately 4in high, 4in long, 4in wide in front, and 10in wide in

back. This workspace, which avoids regions at or near singularities, gives a volume of

120 cubic inches. The position resolution is approximately 0.05mm, and the maximum

force output is 9N (2lbs) at the center of the workspace.

Figure C.4 shows a side view of the device. The advantages of the 3GM as a

haptic interface, including low inertia, low friction, backdriveability, and accurate

force output, also make it ideal for use as a robot �nger.

C.2.2 Device Control

Forward Kinematics

The device is composed of a planar �ve bar mechanism mounted on an extra rotational

axis to change its plane of motion. Figure C.5 shows the link lengths and angle

variables used to describe the 3GM kinematics.

The forward kinematics are calculated using the following intermediate variables:

a1 = l1 cos �1 � l2 cos �2 (C.4)
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Figure C.4: A side view of the 3GM robotic �nger.

Figure C.5: 3GM kinematic variables.
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a2 = l1 sin �1 � l2 sin �2 + h1

b1 =
l3

2 � l4
2 � a1

2 � a2
2

2l4

b2 =
l3

2 � l4
2 + a1

2 + a2
2

2l3
;

c = arctan

 
a2p

a12 + a22
;

a1p
a12 + a22

!
:

While the device is designed so that singularities are not encountered in the oper-

ational workspace, it is possible to reach them in free motion. One of the singularities

occurs when b1p
a12+a22

or b2p
a12+a22

is � 1. This position also presents a problem in

the forward kinematics computation because the following arccos calculations cannot

be performed. If the �nger is not in this singular position, the passive joint angles

are calculated from

1 = c� arccos

0
@ b1q

a21 + a22

1
A (C.5)

2 = c� arccos

0
@ b2q

a21 + a22

1
A :

The selection of the arccos result (there are two solutions) in the calculation of 1

determines whether the robot is in \elbow up" or \elbow down" con�guration. The

robot was used in \elbow up" con�guration in the work presented in this thesis. 2

is not used in any of the subsequent kinematics calculations. However, the correct

value for 2 can be selected to match the elbow con�guration determined by 1.

The endpoint position in Cartesian Coordinates is then calculated using

r = l1 cos �1 + l5 cos 1 (C.6)

x = (r + h2) cos �3 + h3 sin �3

y = (r + h2) sin �3 � h3 cos �3

z = l1 sin �1 + l5 sin 1:
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Jacobian

The device Jacobian is calculated using partial derivatives of the forward kinematics.

J =

2
6664

@x
@�1

@x
@�2

@x
@�3

@y

@�1

@y

@�2

@y

@�3
@z
@�1

@z
@�2

@z
@�3

3
7775 (C.7)

Before writing out the �nal equation for the Jacobian, let us �rst calculate several

intermediate variables.

c1 =
l1l5 sin(�1 � 1)

l4 sin(2 � 1)
(C.8)

c2 =
l2l5 sin(2 � �2)

l4 sin(2 � 1)

@r

@�1
= �l1 sin �1 � c1 sin 1

@r

@�2
= � cos �3 sin �1

J =

2
6664

@r
@�1

cos �3
@r
@�2

cos �3 �(r + h2) sin �3 + h3 cos �3
@r
@�1

sin �3
@r
@�2

sin �3 (r + h2) cos �3 + h3 sin �3

l1 cos �1 + c1 cos 1 c2 cos 1 0

3
7775 (C.9)

The Jacobian is used for two purposes in �ngertip control: calculating endpoint

velocity based on joint angle velocities, and calculating the necessary motor torques

to output a desired Cartesian force.

v = J _� (C.10)

� = JT f

Gravity Compensation

Gravity compensation is used to add torque to the motors in order to balance the

weight of the �nger. While full gravity compensation requires exact measurement of

the masses and locations of every component in the �nger, a simple approximation can

be used. Observing the kinematics of the �ngertip in the pose used for exploration,

the �rst motor (�1) applies most of the vertical force. Thus, this motor alone can be
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used to apply gravity compensation. The compensation torque is approximated as

�g =Ml5 cos �1; (C.11)

where M is an empirically determined mass value for the system. While this method

works well for the �ngertip position in the haptic exploration experiments in Chapter

4, full gravity compensation would be necessary for general applications.

Software Modules

Control software for the �nger is divided into several modules:

� Main Program and Interrupt Service Routine. This module runs the high-level

control of the �nger and the user interface. The interrupt reads the kinematics

of the device, calculates desired output forces based on the exploration state

and control law, and outputs torques to the motors. The interrupt is read at a

constant rate, typically 1kHz.

� Vector and Matrix Operations Methods. Because matrix and vector multipli-

cation, addition, and subtraction are commonly used in control of the �nger,

object-oriented programming was used create structures and handle basic vector

and matrix operations.

� Transformations Module. There are several di�erent coordinate systems used

in the haptic exploration control. This module records the transformations be-

tween the World Coordinate System (WCS), Tactile Coordinate System (TCS)

and Surface Coordinate System (SCS) in the form of rotation matrices.

� Tactile Sensor. The tactile sensor module handles the reading and interpretation

of tactile sensor data to determine the angle of the contact normal in the Tactile

Coordinate System. This information is passed to the Interrupt Service Routine

for use in exploration.

� Finger Kinematics and Force Output. The �nger kinematics and force output

commands are located in a module that deals only with the kinematics and

dynamics of the robotic �nger. Based on measured joint angles and velocities,

the state of the �nger is calculated. When a desired output force is determined

in the Main Program, the necessary motor torques are calculated in this module.
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� D/A and A/D Methods. Low-level commands to read and output data, provid-

ing communication between the �nger/tactile sensor and the computer boards,

are located in this module.
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