

To be presented at the 4th International Symposium on Experimental Robotics, Stanford, CA, June 1995

An Object-Oriented Framework for Event-Driven
Dextrous Manipulation

James M. Hyde, Marc R. Tremblay, and Mark R. Cutkosky
Center for Design Research

Stanford University
Stanford, California 94305-2232

Abstract

Multi-fingered robotic end-effectors have not yet made sig-
nificant inroads into practical applications, partly due to
the complexity of dextrous manipulation tasks. This paper
develops an approach for assembling tasks from relatively
simple phases which are punctuated by discrete events,
signaling the transfer of operation to the next phase in a
sequence. We examine the constraints active during
phases, and develop methods for conducting smooth tran-
sitions between phases. Techniques for robust event detec-
tion in the presence of disturbances are also described.
Experimental data is shown in support of the phase transi-
tion and event detection methods.

1. Introduction

A dextrous manipulation task can be viewed as a sequence
of control phases punctuated by events. For example, as
the fingers of a hand close upon an object they are driven
using position control, but when manipulating an object
they are driven to maintain control of internal forces. In
this example, the sensation of contact is an event that sig-
nals the transition from one control phase to the next.

In manipulation, many events are associated with
changing contact conditions and attendant changes in the
kinematic and dynamic equations that describe the behav-
ior of the fingers and object. The changing dynamics and
kinematic constraints require different control laws and/or
controller gains during each phase.

In the physiology literature, it has been observed that
when humans grasp and manipulate objects they employ a
sequence of responses triggered by events detected using a
combination of haptic sensors [Joh91]. One motivation of
the present work is to emulate the human ability to shift
smoothly between responses.

The basic concept of a phase/event approach to dex-
trous manipulation and a discussion of the tactile sensors
used to detect events have been given elsewhere [Cutko-
sky and Hyde 1993]. In this paper we focus on a frame-
work developed for defining and executing phases and
transitions and for detecting events.

In the present work, a task phase includes a specific
control law, along with explicit force/motion constraints
and provisions for force or motion trajectory specifications
for the duration of the phase. The transition from one

phase to the next is triggered by events which can be
expected or unexpected. A phase-manager selects an
appropriate subsequent phase based on the detected event.
Using phase-based control, a complex manipulation task
can be decomposed into comparatively simple elements,
making the manipulation process tractable.

The concept of decomposing a task into discrete units
is hardly new. However, there are some special consider-
ations in the context of dextrous manipulation:

• Events are primarily associated with changes in contact sta-
tus and are detected with (comparatively noisy) haptic sen-
sors.

• Time constants are short; for example, if incipient slippage is
detected, corrective action must be taken in milliseconds.
Consequently the control framework must strike a balance
between flexibility and computational efficiency.

• It is essential to maintain smooth control across the transi-
tions associated with changes in the kinematic structure of
the grasp. Rough transitions will disturb the sensors that are
being relied on to detect events.

Our goal is a general purpose programming environ-
ment for dextrous manipulation which accounts for these
considerations and permits flexible, robust designation and
execution of manipulation tasks.

Our control framework is implemented as an object-
oriented system with object classes for phases and events.
We describe the framework and its motivating design deci-
sions. We provide results of simple manipulation experi-
ments conducted using the framework and discuss what
they have taught us, motivating future extensions of the
system.

2. Related Work

Although multifingered robotic hands have been available
for over a decade, their use has been largely confined to a
few research laboratories and their application in practical
tasks under autonomous control is virtually nonexistent.
One reason for the slow progress in putting such hands to
work is the complexity of dextrous manipulation from the
standpoints of kinematics, dynamics, sensing, control, and
planning.

As Table 1 indicates, the requirements for successful
manipulation can be broadly divided into three levels. At
the highest level, one is concerned with task planning,

An Object-Oriented Framework for Event-Driven
Dextrous Manipulation

James M. Hyde, Marc R. Tremblay, and Mark R. Cutkosky
Center for Design Research

Stanford University
Stanford, California 94305-2232

Thi d d i h F M k 4 0 4

grasp choice, etc. At this level, events such as acquiring or
releasing a part are treated as symbolic entities that occur
instantaneously and shift the hand/tool system from one
state to the next. Considerable research has been con-
ducted on discrete event systems for robotic manipulation
and many of the techniques including fuzzy Petri Nets
[Cao93] and discrete event systems [Sob92, Kat94,
McC93] are applicable to dextrous manipulation.

At a lower level, dextrous hands pose formidable chal-
lenges in terms of coordinating the motions and forces
applied by fingers grasping and manipulating an object.
The literature in this area is extensive and includes impor-
tant developments in kinematics, dynamics and control.
Our own framework particularly builds on the operational
space dynamics formulation of Khatib [Kha87], the repre-
sentations of internal forces developed by Nagai and
Yoshikawa [Nag93], the object impedance control formu-
lation of Schneider [Sch89], and the MDL force/motion
trajectory language of Brockett [Bro88].

While there is an extensive literature concerning the
high-level and low-level issues in table I, the middle level,
at which the framework presented in this paper resides,
has received comparatively little attention. Some impor-
tant exceptions include the work of Schneider [Sch89],
Brock [Brk93], and Brockett [Bro94].

Schneider combined his object-impedance controller
for cooperating arms with state tables of events and associ-
ated control actions. The finite state programming method
employed branching and looping to improve task execu-
tion robustness.Brock introduced task segments described
by a

context

, in which a particular

action

 was executed in
the pursuit of a

goal

. Brockett extended the theoretical
framework of [Bro88] to address hybrid systems com-
posed of continuous dynamics and discrete events.

Other relevant work includes techniques for smoothly
and stably switching between motion and force control.
Several techniques from the literature are reviewed by
Hyde and Cutkosky [Hyd93] and compared with a method
based on input command shaping.

The success of decomposing a task into phases also
depends critically on the ability to detect events that will
trigger the transition from one phase to the next. Eberman

High-level
(symbolic events, states)

task planning, grasp choice,
discrete event systems,
Petri nets, etc.

Mid-level phase, transition
control

event detection

Low-level
(co-op control, trajectory
specification)

operational space dynamics,
object impedance control,
kinematics, forces, etc.

Table 1: High-, mid- and low-level requirements for
dextrous manipulation

and Salisbury [Ebe94] used fingertip force/torque sensor
information to label some simple events through a combi-
nation of signal processing and sequential hypothesis test-
ing. In the present work we use a variety of dynamic
tactile sensors which have been demonstrated in previous
work [How90, Son94, Tre93] to be especially suited for
registering contact events in dextrous manipulation.

3. Phase/Event Control Framework

Our control framework spans the gap between high and
low level control noted in Table 1 by establishing a set of
building blocks (phases and events) that are used to
assemble manipulation tasks. Phases control the operation
during a task segment in which a particular set of con-
straints is active, and events signal the shifts from one
phase to the next. These building blocks communicate
with a low level data manager to obtain sensor information
and output commands to actuators.

Chains of Phases and Events

All phases store a list of events that might terminate that
phase, along with the corresponding next phase. This
structure of event/next-phase pairs allows rapid shifts
between phases as events fire, and establishes a chain of
phases to describe the task. The chains may contain
branches and loops to promote robustness.

There are two types of phases: manager and action
phases. Manager phases are responsible for activating the
proper phase in a chain, and may govern multiple parallel
sub-chains – useful when the fingers of a manipulator may
be operating either independently or cooperatively. For
example, three fingers might be cooperatively manipulat-
ing an object while a fourth finger executes an indepen-
dent free motion to obtain a better grasping site. Chains
may contain other manager phases, defining a hierarchical
chain structure.

The action phases are responsible for actually control-
ling the fingers and/or grasped object. We have defined a
class hierarchy of action phases corresponding to the dif-
ferent kinds of control laws needed:

• finger(s) independent versus cooperatively manipulating an
object

• finger(s) or object in free motion versus in contact with, and
constrained by, the environment

• finger(s) or object in stationary versus sliding contact

Phases are activated in response to events, which are
implemented here as objects that store a confidence vari-
able and methods for updating that variable. When an
event confidence reaches a certain level, the event “fires”
and the chain manager activates the next phase in the
sequence. Note that with this interpretation events are
instantaneous; the occurrence of an event means that the
framework has

committed

 to a particular event. This com-

mitment logically takes the system from one state to the
next.

Figure 1 shows events, manager and action phases for a
simple grasp-lift-replace task involving a two-fingered
hand.

The entire task is governed by a single manager
phase

Top

, which controls the task sequence:

Acquire, Lift,
Replace, Retract

. We note that the

Acquire

 phase is also a
manager phase, controlling the execution of two parallel
chains in which the left and right fingers independently
approach the object, make contact and exert a prescribed
contact force. If the fingers fail to make contact with the
object within a certain time, a timeout event occurs, sig-
nalling the transition to a different chain designed to han-
dle this problem.

Other branches are established by the multiple events
that might terminate the

Lift

 and

Replace

 phases. If the
object is stripped from the grasp during

Lift

, for instance,
the detection of this event triggers a loop back to the start
of the

Acquire

 phase. Ultimately, a sequence of phases and
sub-chains with branches and loops may become compli-
cated. The literature on task planning and analyses of
reachability, convergence, etc. will be applicable in these
situations.

The notation in Figure 1 approximately matches the
standard notation of discrete event systems. Action phases,
denoted by circles, correspond to states (or “places” in
Petri net notation); events are box labels that prompt the
system to shift from one state to the next. Note that the

term “transition” in the Petri net literature corresponds to
what we would call an “event.”

Transitions and Event Confidence

We define transitions as the beginning and ending sections
of phases that are used to either prepare for an impending
event or ramp up operation in the phase following an
event. Figure 2 presents an example of a transition that
would occur between the

Extend

and

Push

 phases of Fig-
ure 1. The top plot in Figure 2 shows the evolving confi-
dences of the events tracked in the pre-contact phase.
When one or more of those confidences reaches a “prepa-
ratory threshold,” an “alert action” is triggered, slowing
the fingertip to a constant velocity as it approaches the
object. More generally, alert actions are automatic adjust-
ments in trajectory and/or control gains taken to facilitate
transitions to subsequent phases. Because we do not yet
know which event will actually occur, we can only take
preparations within the context of the current phase and its
control law and constraints. Eventually, the finger contacts
the object, causing the corresponding event confidence to
breach a “commitment threshold,” triggering the switch to
the contact phase. Once we have committed to a particular
event and subsequent phase it is only logical to initiate
control actions and event detection computations within
the context of the new phase.

Returning to Figure 2, after the phase shift occurs, the
“startup action” for the contact phase halts the controller

Figure 1: The phase/event structure for an Acquire, Lift, Replace task in which two fingers alternate between
independent and cooperative phases in response to detected events. Arcs denote transitions into
phase chains not shown here.

Top

Acquire

Finger 1

Finger 2

Extend

Manager Phase Cooperative Action Phase

Push

Lift Replace Retract

Transition Jump in chain hierarchyEvent

CI Independent Action Phase

co
ntac

t

objec
t s

tri
pped

fro
m

 gra
sp

objec
t c

ontac
t

co
ntac

ts
sta

ble

tim
eo

utLevel 1

Level 2

Level 3

sli
din

g onse
t

C C

I

I

I

I

I

I

sli
din

g onse
t

tim
eo

ut

setpoint inside the object, causing an increase in the inter-
action force exerted between the fingertip and object. The
event confidences are reset, and the set of scanned events
in the new phase may differ from those in the previous
phase. The new events are monitored and their confi-
dences will evolve to trigger additional alert actions and
phase shifts.

Action Phases & Constraints

The Free Motion and Contact phases noted in Figure 2 are
examples of Action phases. Action phases, as mentioned
above, are responsible for specifying the laws that control
the behavior of a fingertip or grasped object. This respon-
sibility includes specifying trajectories of setpoints for the
phase control laws; following the approach of Brockett
[Bro94] it is understood that trajectories may include both
forces and positions with variable control gains.

Action phases also explicitly store the constraints act-
ing on the system. Constraints may be natural, reflecting
the holonomic or non-holonomic constraints imposed by
environment surfaces, or user-specified, denoting artificial
constraints created to ensure the proper execution of a
phase. For instance, to avoid actuator saturation leading to
non-linear behavior, constraints can be imposed on com-
manded setpoint accelerations or exerted forces. Natural
and user-specified constraints are stored explicitly within
each phase, rather than embedded implicitly into phase
control laws. In this way a modest repertoire of basic
phase types can be customized to meet task-specific con-
straints regarding contact kinematics, friction, etc.

Figure 3 provides a breakdown of the constraints active
during a fingertip sliding phase. In the figure, a fingertip
slides along a constraining surface under impedance con-
trol. The gap between the setpoint and actual fingertip
position establishes an impedance force,

f

imp

,which is sub-

Figure 2: Event Confidences, Alert Action, and Startup Action for a transition prompted by a contact event. The Free Motion
phase monitors the confidence levels of events a and b. At time 1, event a’s confidence exceeds a preparatory thresh-
old, prompting an alert action which slows the approach to a constant velocity. At time 2, event a crosses a commit-
ment threshold, shifting execution to a Contact phase and resetting the event confidences. The new phase starts by
halting the setpoint inside the object, causing the interaction force to increase. The startup action ceases at time 3. In
the Contact phase, events b and c are monitored. Event b eventually reaches a preparatory threshold at time 4, causing
another alert action (not shown).

Time

C
om

m
an

d
ed

Start-up

Alert Action

In
te

ra
ct

io
n

Time

Action

V
el

oc
it

y
Fo

rc
e

E
ve

nt
C

on
fid

en
ce

Time

1 2 3 4

a

cb0

1
Free Motion Phase Contact Phase

b

ject to user-specified soft and hard constraints. In addition,
the contact prevents further motion into the surface and
defines a constraint on the normal and tangential interac-
tion force components. These are natural constraints.

If the fingertip slides far enough, the manipulator links
will encounter a workspace obstacle. Further setpoint
motion will cause the impedance force to violate its soft
constraint, prompting reactive behavior from the phase to
avoid actuator saturation. If the impedance force exceeds
its hard constraint, or if any of the other constraints in the
first three columns of Figure 3 are violated, events fire,
triggering a shift to a subsequent phase.

4. Event Detection

Events have been described thus far as objects used to sig-
nal the shifts between phases. The reliable detection of
events is a rich problem in itself. Events have built-in
functions for updating their confidences on the basis of a
combination of sensor information and context.

In our framework, the individual fingertips are
equipped with multiple sensors, each of which can provide
several types of information. For example, tip position,
velocity and acceleration can be computed from joint sen-
sor data and short-time energy can be obtained from skin
acceleration sensor data. We refer to each of these types of
information as

sensor-based

 features. When contextual
information about the robot’s behavior is included as a
feature (desired velocity or force, for example) we refer to
these features as

context-based

features.
For each phase in a manipulation task, if one identifies

the possible events and the features required to detect

them, one can construct a feature space for the phase. Let
us define a feature

F

 as a set of discrete real numbers

f

 cor-
responding to all possible values for that feature and let

Φ

be the current phase of a manipulation task. Now let us
define an

n

-dimensional Euclidean feature space corre-
sponding to the cartesian product of the family of sets, or
observed features, denoted by:

At any given moment during the phase, there will be an

n

-
tuple (

f

1

,f

2

,...,f

n

) which corresponds to the current feature
values.

Within this feature space, each event will occupy
a set of regions corresponding to a

q

i

 - dimensional sub-
space:

where

k

 corresponds to the number of regions associated
with each event

e

. If we define an n-tuple in the n-
dimensional feature space of a given phase as

It then follows that the condition

must be satisfied for an event to have

possibly

 occurred.

FΦ
n

F1 F2 … Fn×××=

eiΦ
qi

ξ

ei Φ()
qi ξ ij

j 1=

k

∪ ξ ij ei Φ()
qi⊆ for all i ℵ p ∈{ } =

ξ

f Φ
n

f 1 f 2 … f n, , ,()=

f Φ
n

EΦ
p∈

Figure 3: Constraint categorization for a Sliding phase using impedance control. The controller setpoint is moving in the “m”
direction. If the links contact the obstacle, further setpoint motion may cause a violation of the impedance force soft or
hard constraints. A soft constraint violation prompts the phase to take action to back away from the constraint to avoid
actuator saturation. Violation of the hard constraints or natural constraints triggers a shift to a different phase.

Natural Constraints User-Specified Constraints

Environment Robot Hard Soft

xn const= τ i τ i max,≤ xcmd xmax≤ f imp f imp soft,≤

f m µ f n= x xmax≤ ẋcmd ẋmax≤

ẋ̇cmd ẋ̇max≤

f n f n max,≤

f imp f imp hard,≤

Violations cause an event

n

m xcmd

x

obstacle

fimp

The decision as to whether an event has occurred is
made using confidence distribution functions (c.d.f.’s), or

 defined as:

where 0 means that from that feature’s point of view, the
event could not possibly have occurred and a value of 1
means that from that feature’s point of view, all
requirements have been met and the event certainly could
have occurred. The functions are similar to the
membership functions in fuzzy set theory.

Once confidence values have been obtained for each
feature, they need to be combined in order to get overall
confidence values for each event. By observing these
continuously varying confidences, the framework can
make decisions relating to event occurrence. Whereas the
sensor-based features are typically uncertain and noisy, the
context-based features represent current knowledge and
serve mainly to rule out certain events. Therefore, the
overall confidence for an event consists of the weighted
sum of the confidences of the sensor-based features
multiplied by confidence values for each of the context

ψ f()

ψ f() : F 0 1 ,[]→

based features. Thus a single context-based feature can
significantly influence the overall confidence value.

Let the overall confidence that an event is occur-
ring at sampling period

k

 be defined as

where

m

 corresponds to the number of context-based
features,

n

 corresponds to the number of sensor-based fea-
tures, is the weight assigned to a sensor-based confi-
dence values and is the c.d.f. of a given feature. Note
that the same feature will have different c.d.f.’s depending
on which event is being considered. As shown in Figure 2,
the relationship of the event confidences to established
preparatory and commitment thresholds defines when the
framework commits to an event and shifts operation from
one phase to the next.

5. Experiments and Results

We conducted a series of tests of the event detection and
phase transition schemes described in the preceding sec-
tions. For our experiments, we chose a “cooperative

Ψ ε

Ψε k ψεi f̃ i()
i 1=

m

∏

ωj ψ
ε
 j f ˆ j ()

j

1=

n

 ∑

× =

ωj ψ

Figure 4: Data from four event detection experiments.

0 50 100
0

0.5

1

link collision

time (ms)

co
nf

id
en

ce

0 50 100
0

0.5

1

disturbance

time (ms)
co

nf
id

en
ce

0 50 100
0

0.5

1

contact

time (ms)

co
nf

id
en

ce

0 50 100
0

0.5

1

slip while moving

time (ms)

co
nf

id
en

ce

contact

disturbancecollision

object slip

motion” phase in which two fingers manipulate a grasped
object. In this phase, we consider four types of events that
cause sensor excitation thereby triggering reactions. These
events are: object/world contact, link collision, mechanical
disturbance and object slip. Four sensors were used for the
experiments: position, force, skin acceleration and stress-
rate sensors. The sensor-based features included maximum
short-time energies of force and skin acceleration sensors
as well as position and force errors. The context-based fea-
tures included commanded object acceleration. Details on
the sensors and features are provided in [Tre95].

The overall confidence value for each monitored
event was computed for a variety of runs conducted over a
range of speeds from 1 to 10 cm/s and with hard and soft
objects. In all test cases, the scheme quickly identified the
correct event. Figure 4shows the results for 4 typical runs
where the overall confidence for each event is displayed as
a function of time and the title of the plot indicates the
actual event that occurred. For all plots, the event occurs at
t=50ms and one can see that in every case the correct
event is detected quickly.

Figure 5 shows the results for a typical phase transi-
tion. In this case the event is an object/world contact, as in
the upper left plot of Figure 4. At approximately 1.4 sec-
onds, the contact event passed the preparatory threshold,
prompting a constant velocity approach. At 2 seconds the
object/world contact event occurred, shifting execution to
a cooperative manipulation Contact phase. The object/
world interaction force increases during the start-up action
to its desired level of 2 N. The transition is executed
quickly without imparting significant vibration into the
system. Details on this and other transitions are given in
[Hyd95].

6. Conclusion

Our preliminary experiments conducted on a system of
two fingers have demonstrated the efficacy of this archi-
tecture. The underlying object orientation of the phases
and chains permits simple extensibility and rearrangement
of the chains. The provision of explicit constraints, prepa-
ratory and startup actions, and possible terminating events
for each phase allows a modest set of basic phase types to
be applied to many specific tasks. The data manager,
phase, transition, and event objects combine into a general
programming environment for dextrous manipulation
tasks. Using this environment, we can design and execute
manipulation tasks with flexibility and robustness.

7. Acknowledgments

This paper describes work performed at the Stanford Uni-
versity Dextrous Manipulation Laboratory. Funding for
this research was provided in part by the Office of Naval
Research under the University Research Initiative contract
#N-00014-90-J-4014-P01.

8. References

[Brk93] Brock, D. L., “A sensor based strategy for automatic
robotic grasping,” Massachusetts Institute of Tech-
nology Ph.D. Thesis, Department of Mechanical
Engineering, 1993.

[Bro88] Brockett, R. W., “On the computer control of move-
ment,” IEEE Int'l. Conf. on Robotics and Automation,
1988.

[Bro94] Brockett, R. W., “Dynamical systems and their asso-
ciated automata, in Systems and Networks, Mathe-
matical Theory and Applications, Academie Verlag,
Berlin, 1994.

Figure 5: Data from a free motion -> contact transition experiment where a grasped object is brought into con-
tact with an environment surface. Compare with Figure 2. At time 1, an alert action is triggered,
causing the object to adopt a constant velocity approach. The object/world contact event is detected
at time 2, and the startup action for the contact phase ceases at time 3.

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1

1.5

2

2.5
Commanded (- -) vs. Estimated (-) Force

Fo
rc

e
(N

ew
to

ns
)

Time (seconds)
0 0.5 1 1.5 2 2.5 3 3.5 4

-0.02

0

0.02

0.04

0.06

0.08
Commanded (- -) vs. Actual (-) Velocity

V
el

oc
it

y
(m

/
se

c)

Time (seconds)

1 2 3 1 2 3

[Cao93] Cao, T., and Sanderson, A. C., “A fuzzy petri net
approach to reasoning about uncertainty in robotic
systems,” IEEE Int'l. Conf. on Robotics and Automa-
tion, 1993.

[Cut93] Cutkosky, M. R., and Hyde, J. M., “Manipulation
control with dynamic tactile sensing”, 6th Interna-
tional Symposium on Robotics Research, Hidden Val-
ley, Pennsylvania, 1993.

[Ebe94] Eberman, B., and Salisbury, J. K., “Application of
change detection to dynamic contact sensing,” Int’l
Journal of Robotics Research, v. 13, n. 5, pp. 369-
394, 1994.

[Hog85] Hogan, N., “Impedance control: an approach to
manipulation: parts I, II, and III,” ASME Journal of
Dynamic Systems, Measurement, and Control, v. 107,
pp. 1-24, 1985.

[How90] Howe, R. D., “Dynamic tactile sensing,” Ph.D. The-
sis, Stanford University, October 1990.

[Hyd93] Hyde, J. M., and Cutkosky, M. R., “Contact transition
control: an experimental study,” IEEE Int'l. Conf. on
Robotics and Automation, 1993.

[Hyd95] Hyde, J. M., “A phase management framework for
event-driven dextrous manipulation,” Stanford Uni-
versity Ph.D. thesis, 1995.

[Joh91] Johansson, R. S., and Westling, G., “Afferent signals
during manipulative tasks in man,” In Franzen, O.,
Westman, J. (eds.): Information processing in the
somatosensory system: Proceedings of an Interna-
tional Seminar at the Wenner-Gran Center, Mac-
millan, New York, 1991.

[Kat94] Katayama, Y., Nanjo, Y., and Shimokura, K., “Event-
driven motion-module switching mechanism for
robot motion control: concept and experiment,”
ASME Journal on Dynamic Systems and Control, v.
55, n. 1, 1994.

[Kha87] “Unified approach for motion and force control of
robot manipulators: the operational space formula-
tion,” IEEE Journal of Robotics and Automation, v. 3,
n. 1, pp. 43-53, 1987.

[McC93] McCarragher, B. J., and Asada, H., “A discrete event
approach to the control of robotic assembly tasks,”
IEEE Int'l. Conf. on Robotics and Automation, 1993.

[Nag93] Nagai, K., and Yoshikawa, T., “Dynamic manipula-
tion/grasping control of multi-fingered robot hands,”
IEEE Int'l. Conf. on Robotics and Automation, 1993.

[Sch89] Schneider, S. A., “Experiments in the dynamic and
strategic control of cooperating manipulators,” Stan-
ford University Ph.D. thesis, 1989.

[Sob92] Sobh, T. M., and Bajcsy, R., “Autonomous observa-
tion under uncertainty,” IEEE Int'l. Conf. on Robotics
and Automation, 1992.

[Son94] Son, J. S., Monteverde, E. A., and Howe, R. D., “A
tactile sensor for localizing transient events in manip-
ulation,” IEEE Int'l. Conf. on Robotics and Automa-
tion, 1994.

[Tre93] Tremblay, M. R., and Cutkosky, M. R., “Estimating
friction using incipient slip sensing during a manipu-
lation task,” IEEE Int'l. Conf. on Robotics and Auto-
mation, 1993.

[Tre95] Tremblay, M. R., “Using multiple sensors and contex-
tual information to detect events during a manipula-
tion task,” Stanford University Ph.D. thesis, 1995.

