Peer to Peer

e often, if not always, discuss the
WVl'Itues of the Semantic Web (and
services) in terms of e-commerce
— virtual enterprises and all that jazz.

But as it turns out, that’s not what’s so
important about enterprise semantics.

The Semantics

of Semantics

If you weren'’t sufficiently put off by the
title and actually read my inaugural
column as editor of the Peer to Peer
department (“Pragmatic Semantic Uni-
fication,” Sept./Oct. 2005, p. 96), I
wouldn’t have to repeat myself now, but
you probably were and, of course, that’s
my fault. Briefly, I put forth the thesis
that the semantics of semantics is oper-
ational for both computers and humans.
We might talk to people and think we
know what they're saying, but we don’t
really know until we try to use the lan-
guage to actually do something togeth-
er, such as hunt or build a software
system. Until then, it’s all just talk.

The same is true with computers. If
you say your ontology unifies with
mine, all I really know is that you've
made some mapping between them,
which might or might not make sense to
me. So what? Where are the mapping’s
semantics? They exist only if you have
an application that uses your ontology
and I have one that uses mine, and the
two applications interoperate to our
mutual satisfaction using the mapping.
That’s my story, and I'm sticking to it.

The SWS Challenge

I'm sticking with the story so much
that since that column’s publication,
I've devoted a lot of time — along with

96 MAY e JUNE 2006

Published by the IEEE Computer Society

Editor: Charles Petrie ¢ petrie@stanford.edu

Charles Petrie * Stanford University

Michal Zaremba, Holger Lausen, and
others — to developing the Semantic
Web Services Challenge Workshop
(www.sws-challenge.org). The 2006
workshop’s first phase met in March to
mutually define and refine a set of
problems that semantics-based tech-
nologies should solve. The idea isn’t to
show computational speed but rather
to operationally explore the semantic
technologies space.

Based on the challenge of process-
ing and fulfilling a RosettaNet (www.
rosettanet.org) purchase order (PO),
we've collectively defined a set of
problem levels as well as processes for
adding problems and for evaluating
how well the technologies solve them.
A RosettaNet PO is a complex XML
specification as well as a simple proto-
col for exchanging messages about its
processing. The workshop’s level-0
problem is to match this RosettaNet
specification to a legacy system that
doesn’t conform to it. In level 0, we
simply test that the participant system
actually exchanges the right messages
under different circumstances, includ-
ing errors and incomplete orders.

At the workshop’s second phase this
June in Montenegro, the invited partic-
ipants will face problems identified as
levels 1a, b, ¢, and 2a. (We've identified
several kinds of problems, represented
by sublevels within each.) This opera-
tional evaluation is designed to define
the technologies’ semantics and let us
collectively evaluate what success level
the solution reaches. If you can say that
your semantics-based technology at
least solves the basic services-discovery
problem of 2a to success level 0, then we

1089-7801/06/$20.00 © 2006 IEEE

It’s the Programming, Stupid

have a common understanding of your
technology based on the workshop tests.
And how do we evaluate your solution?
By the amount of human effort it takes
to go from one problem (sub)level to the
next. The idea is that a semantics-based
solution should semiautomate reactions
to a change in an e-commerce partner’s
system or the need to find a new part-
ner. (If you're reading this, I'll assume
you're interested in semantics and have
seen the standard e-commerce exam-
ples, so I won't repeat them here.)

That’s a lot of background, even
though I've omitted the specifics, which
you can read about at the SWS Chal-
lenge site. Yet, the interesting part is in
the technologies we've received as
entries so far. You might be as surprised
by them as we were.

Scaling Enterprise
Programming
If you thought as we did, you'd expect
most of the entries to be Al-like —
relying on knowledge representation
through declarative statements that
could be easily modified without mod-
ifying the code that compiled or inter-
preted them. Instead, we received a lot
of software engineering technologies,
most showing that it was very easy to
modify the code via some nifty GUL
Well, in retrospect, duh! The argu-
ments for declarative semantics all boil
down to ease of programming,. If the
definition of “department manager”
changes, for example, how hard is it to
change the code in different applica-
tions that depended on the old defini-
tion? If you find a new supplier for a

continued on p. 95

IEEE INTERNET COMPUTING

continued from p. 96

part with defined specs, how much do
you need to change in your legacy
system to interoperate? If the specs
change, what code needs to be
changed? How hard is it?

Christoph Bussler, of Cisco, illus-
trates the idea with the following
example: How will your accounting
system react to a supplier that adds, at

You Can Help

In phase II of the 2006 SWS Challenge
Workshop, this June, participants will
report their success in solving not only
the base-level problems but also a set
of problem changes that we’ll define in
detail roughly one month prior to the
workshop. As a basic measure for each
level, the SWS Challenge Web services
must be invoked with correct messages

If semantic technology has a future — and
I’m sure that it does — it’s in software

engineering.

no cost, a power cord to a product you
ordered? Standard accounting systems
reasonably reject invoices that contain
unordered parts. How many program-
mers in a developing country does it
take to produce an accounting system
that understands “power cords” as a
human accountant would?

The main challenge facing modern
enterprises is how to scale program-
ming costs in the face of rapid change
and the increasing requirement for
interoperation with other enterprises.
Some researchers (including me) have
posed the problem of the Semantic
Web, and services, as an interoperabili-
ty issue. Thinking about it carefully, we
see that the issue is one of employing
the least possible effort to reconcile sys-
tems programmed by different people.

Given a system with some sort of
really terrific semantics magic, this
task would take no effort at all: at least
one system would automatically adapt
when another system changed some
interaction. So it boils down to pro-
gramming effort. If semantic technol-
ogy has a future — and I'm sure that it
does — it’s in software engineering. It
remains to be seen whether a real
semantics-based approach can do bet-
ter than other software engineering
techniques. Our challenge is designed
to help provide the answer.

IEEE INTERNET COMPUTING

and in the correct sequence, but we’ll
also evaluate participants on how
much they had to alter their systems to
respond to our released changes. The
first changes to which the participants
will have to react will be sublevels in
which the legacy system changes and
the RosettaNet specification changes.
In level 2a, the participants will be
challenged to discover a shipper in
order to fulfill the order.

We’ll continue to build out the
challenge problems and corresponding
system as a community effort. Holger
Lausen will serve as the “Linus Tor-
valds” of this open-source initiative.
Our intent is to establish a living on-
line system that can be used to evalu-
ate different approaches. Future
face-to-face workshops will look not
only at technologies but also at how
the community initiative is develop-
ing. In the meantime, there’s an issue
that you, IC readers, can help us with.

One of our naive thoughts was that
we’d determine whether any code or
data had to be changed in going from
one problem level to the next. One
approach would be better than anoth-
er if only data (preferably semantic
declarations) had to be changed, and
even better if the developers had to
only add new data and not delete any.

Then someone asked if Extensible

www.computer.org/internet/

It’s the Programming, Stupid

Stylesheet Language Transformations
(XSLT) constituted code or data, and
I thought about Lisp, in which the
functions and declarations are de-
fined in the same language. And then
there’s Java. Oops! So, we decided to
let challenge participants self-decide
what’s code and what’s data. They’ll
declare what they've changed and
how, but those declarations will need
to be peer reviewed.

hase II workshop participants will

peer review each other’s work, but
as we extend the problems online,
we’ll need to extend the community of
reviewers. Yes, we know you're busy.
But if you want your technology eval-
uated, you need to volunteer to review
someone else’s. And if you're not par-
ticipating this year, we hope that
you’'ll follow along on the wiki and
think about how your favorite tech-
nology might be able to solve some of
the challenge problems (www.sws
-challenge.org/wiki/index.php?title=
Special:Userlogin).

Finally, whether you're participat-
ing this year, or in subsequent work-
shops, we encourage you to cheat. All
technologies in this workshop will be
publicly accessible. We encourage you
to “steal” them, build on them, improve
them, combine them, and do some-
thing better. Come to one of our work-
shops and show us how to really do it.

We hope to hear from you on the
participant’s mailing list (http://lists.
deri.org/mailman/listinfo/sws-challenge
-participants) and, when you get your
password by joining the effort, on
the wiki. M

Charles Petrie is a senior research scientist and
consulting associate professor at Stanford
University. His research interests include
concurrent engineering, virtual enterprise
management, and collective work. Petrie has
a PhD in computer science from the Uni-
versity of Texas at Austin. He is EIC emeri-
tus and a member of IC’s editorial board.

Contact him at petrie@stanford.edu.

MAY e JUNE 2006 95

