The Semantic Web is, without a doubt, gaining momentum in both industry and academia. The recent International Semantic Web Conference (ISWC) attracted more than 500 researchers; major vendors including IBM, Oracle, and Software AG have released or announced products; and the forthcoming Semantic Technology Conference in San Jose, California, is poised to be an impressive showcase for executives and venture capitalists on the business potential of semantic technologies. Unfortunately, however, Semantic Web services — annotating computational functionality rather than data — are underrepresented on the agenda, at least if we take the number of scientific publications about Semantic Web services as a proxy. Indeed, they’re widely regarded as the “ugly stepchildren” while most Semantic Web researchers dedicate their attention to annotating Web content stored in static documents or database-driven applications.

In the January/February 2006 installment of Peer to Peer, Rob McCool proposed a very lightweight approach to making the Semantic Web a reality — mainly by adding some extra tags to existing Web content.\(^1\) Although that might work for a small part of the Web, annotating existing Web data won’t make the original Semantic Web vision a reality. Instead, evidence shows that Semantic Web services (SWS) frameworks are mandatory components of the Semantic Web, primarily because entities are more willing to expose functionality than data in business settings.

Revisiting Semantic Web Myths
Many assume that we can realize the Semantic Web by gradually augmenting existing data (mainly HTML and XHTML) via ontological annotations derived from today’s human-readable Web content. Next-generation Web search engines should then be able to use this machine-readable metadata to improve precision and recall, and intelligent applications would be empowered to extract and recombine information found on the Web. This mindset, however, is flawed because it’s based on several myths.

The Needle-in-the-Haystack Assumption
First, the common assumption that “everything is on the Web, but we have insufficient means at hand for search” is not true. In a recent representative sample of Web content in the Austrian tourism domain, we collected striking evidence that the amount of information on Web resources was insufficient to find and rank accommodations — at least, if we use the complete set of registered accommodations as the reference.\(^2\) Only 7 percent of vendor-operated sites offered room-availability information, which is the most important fact when searching for a suitable offer; even among tourism portals that support availability checks and booking from the technical side, only 21 percent of the accommodations give availability data. The remaining 79 percent require a potential guest to either call or communicate via email to check availability. In other important information categories such as room features, star rating, or available technical equipment, we found similarly weak coverage. At least half the sites covered only 7 of 16 typically relevant categories in sufficient detail for decision-making. At least half the sites covered only 7 of 16 typically relevant categories in sufficient detail for decision-making. In other words, even perfect annotation of existing Web content would fail to make the Semantic Web a reality in this arena. Although tourism is just one small application domain, researchers have naturally identified it as an ideal showcase because of its information heterogeneity, market fragmentation, and rather complex discovery and matchmaking tasks, including substitution and composition — all of which are limitations that Semantic Web technologies promise to overcome.\(^3,4\)

The Business Web Is Not Stateless
Persistent information publication is a core Web design principle. A fully compliant Web application shouldn’t change its internal state in response to an http read access of an available resource, but many Web applications...
flight from Boston to Los Angeles, the
eleventh person’s request is affected by
the airline’s knowledge that demand is
high enough for it to offer the remain-
ing seat without discounting the rate.
The whole airline industry relies on
yield-management systems that do just
such computations, and you can bet
that your click stream through a Web
shop that uses dynamic pricing will
affect the final offer. Some online
shops take into account your IP
address, location, and even the time of
day when determining what products
and prices to display.

In other words, a request for price
and availability isn’t a mathematical
function like

\[
f(\text{goal}, \text{preferences}) \to \text{matching_offers}[].
\]

because we can’t assume that two
requests with identical goals and pref-
erences will return the same set of
offers. In such a scenario, any data-
centric annotation will fail because the
data – even if identified by a unique,
session-ID-like URI – expires soon
after it’s published. We’re used to
assuming that offers consist of discrete
alternatives and stable list prices. A
price, however, isn’t a static property
of a product but rather a context-
bound result of interactions between
market participants, and a wealth of
economics research exists on how
asymmetric information distribution
affects the price of goods.

We can, of course, make any piece
of information a first-order object on
the Web by assigning a URI for each
query result. Yet, that doesn’t free us
from providing a means for discovering
functionality that can transfer us from
to be repeatable. If the result to a
request is valid only in the context of
that request (an expiring offer for a
flight ticket, for example), annotating
the application in a way that makes all
internal data appear as if it were static
won’t help. Also, although we can
build wrappers to annotate many Web
applications’ functionality, annotating
the data inside is often impossible
because discovery and matchmaking
are hidden inside the system. In such
scenarios, the only viable solution
seems to be to declaratively describe
which goal a given function can ful-
fill, what state is required prior to
invoking the function, and how the
invocation will affect the state of the
world – that is, its post conditions.

This is exactly what Semantic Web ser-
dices frameworks, such as the Web
Service Modeling Ontology (WSMO),
OWL-S, or the Semantic Web Services
Language (SWSL), offer. The SPARQL
protocol,\(^6\) which will provide a stan-
dard query interface to Resource
Description Framework (RDF) databas-
es, can also be regarded as a simplistic
framework for exposing functionality,
albeit limited to database queries.

Data annotation is also problemat-
ic from a practical perspective: if tools
such as Human Language Technology
(HLT) can perform it automatically, the
question arises whether we should add
annotations to data at all, given that
we could apply the same HLT at data-
consumption time. Manual annotation,
on the other hand, is slow, costly, and
can become inaccurate if an annotator
fails to update it when human-readable
content changes. In this sense, annotation violates the “one fact in
one place” paradigm, which has con-
tributed so much to data consistency
since E.F. Codd introduced it.

The True Complexity
of Matchmaking

In imperfect markets, revealing infor-
mation is an important strategic
action. For example, a hotel might not
want to publicly acknowledge that it

\[\text{Annotation of Data vs. Annotation of Functionality}\]

Work already exists on annotating
dynamic Web content,\(^6\),\(^7\) but the fact
that results to queries for availability
and price aren’t a functional value to
this input isn’t the same as whether a
Web site is based on static HTML/
XHTML pages or dynamic Web pages
(PHP, active server pages, and so on)
that are generated on the fly via a
background database. Including data-
base content as Semantic Web data
isn’t the same as including content
that must be accessed via business
functionality and that’s not guaranteed

\[\text{Annotation of Functionality}\]

...
has few bookings for a given date because that information would give bargaining power to potential guests. Market participants generally also try to disclose information only to seriously interested customers. In addition, they might quote prices based on inferences about potential guests’ willingness to pay. Insurance markets are a typical example of symmetry in offer discovery: not all possible contracts and rates are available (or even visible) to everyone. Again, the querying party’s properties affect the offer set. Among others, IBM’s Yigal Hoffner has done a lot of work in this area.

All too often, Semantic Web research regards matchmaking as a query to a static set of available options. If you’re not convinced, consider mating as a typical example of symmetry and matchmaking’s iterative nature. Mating is symmetric because an individual’s availability is visible only if the potential mate meets several criteria, and the visibility of characteristics might equally depend on whether the other party meets specific criteria (“I show that I am rich only if you are beautiful,” for example, or higher-order expressions such as “I don’t want to be visible for others who want to be visible only for someone who is rich”). Mating is iterative in that we learn about the option space by analyzing our initial query’s result set, and might restrict or weaken our requirements and preferences in response. The same pattern is evident throughout the business world: wholesalers are unavailable to consumers, rebates for state employees are hidden from others, and so on. Even the fact that these options exist is often invisible rather than an openly declared precondition.

The symmetry and strategic aspects of revealing information are fundamental patterns in business interactions rather than just additional complexity that we can easily abstract from. Developing a Semantic Web that requires data to be persistently published to an unknown audience might improve the Web, but it would virtually exclude e-business applications, despite their common use as proof of relevance in numerous papers on the Semantic Web.

No Semantic Web without Services

Exposing functionality in the form of Web services is generally more attractive for market participants than publishing all relevant facts directly on the Web. To turn the Web into the Semantic Web will require a move beyond the data-centric approach of annotating information on Web pages to the annotation of exposed functionality in Semantic Web services technologies. This will necessitate a substantial shift as the Semantic Web services research community is currently much smaller than the general Semantic Web research community. For example, Google Scholar returns 19,200 scientific documents for a search on “Semantic Web” compared to just 1,820 for “Semantic Web services.”

As I mentioned, even perfect annotation of existing Web content would be insufficient to enable the Semantic Web vision, as long as the annotation is limited to persistently published information. The problem isn’t just the lack of machine access to Web content but rather the lack of content itself, except as encapsulated in back-end systems or managed portals that expose only well-defined functionality and limited Web access to internal databases. With no reason to assume the encapsulation of information inside systems will decrease, I believe that the Semantic Web must include annotation of functionality through Semantic Web services technologies such as WSMO, SWL, or OWL-S. I’m also convinced that it’s possible to describe SPARQL endpoints using something like WSMO and thus embed this promising approach into a more generic Semantic Web services framework.

As a first step, Semantic Web researchers should reconsider some rather naïve assumptions about market participants’ willingness to persistently reveal information to a general audience. For example, no sane business will publish its full inventory data to the general public.

As far as Semantic Web services are concerned, we should think about whether fully automated discovery, composition, and orchestration is a realistic scope, or whether more lightweight approaches are appropriate. Semantic Web services can mean a lot more than AI-minded automation of discovery and composition. Perhaps clever human–machine team approaches with mature tooling support will be much more relevant than “magic,” fully mechanized solutions that operate under constraints that can hardly be met outside the laboratory regarding the underlying ontologies’ consistency and reliability. Quite appealing is that both can likely fit well into a single comprehensive representational framework for exposing and finding functionality on the Web, such as WSMO.

References

Peer to Peer

continued from p. 87

1100–1107.

Martin Hepp is a senior researcher at the Digital Enterprise Research Institute (DERI) at the University of Innsbruck, Austria, where he leads the Semantics in Business Information Systems research cluster. He created eClassOWL, the first industry-strength ontology for products and services and is currently working on using Semantic Web services technology for business process management. Hepp has a Master’s degree in business management and business information systems and a PhD in business information systems from the University of Würzburg, Germany. Contact him at mhepp@computer.org; www.heppnetz.de.