
Peering
Editor: Charles Petrie • petrie@stanford.edu

2 	 Published by the IEEE Computer Society	 1089-7801/12/$31.00 © 2012 IEEE� IEEE INTERNET COMPUTING

T he Semantic Web1 aims to allow service
providers to semantically annotate service
descriptions, enabling automatic discovery

and composition, which could in turn reduce
the time and manual effort otherwise needed
to program desired applications. However, after
many years of effort, such services are notably
lacking. The original Semantic Web vision pro-
posed the development of domain ontologies for
this purpose.2 Although the Semantic Web is
distinct from semantic Web services, we con-
flate them because they’ve both been predicated
on top-down, usually formal semantics. Using
this approach, we should be able to repurpose
semantic Web services because we’d have a
common vocabulary that could enable inter
operation among applications developed by dif-
ferent people. Unfortunately, this approach hasn’t
lived up to its initial promise. Here, we look at an
alternative way to achieve such interoperabil-
ity for individual users and developers.

Why Does the Semantic
Web Fall Short?
Why do we lack a common set of ontologies for
general use by open Internet users? Such ontolo-
gies are capable of arising in specific vertical
domains owing to common need and agreement,
as well as in “industrial service parks” in which
companies create ontologies for their own use.
In a previous article,3 one of us (Charles Pet-
rie) noted that McDermott’s famous objection4
applies only to the ideal of creating a general
open Semantic Web with ontologies that are
reusable for all purposes. More specific seman-
tic systems are certainly possible. But semantic

services are scarce, especially on the open
Internet.

The original Semantic Web idea envisioned
general-purpose “agents” that could auto-
matically find, compose, and act on domain-
specific information from various webpages.2
Implementing this vision required that service
providers annotate websites and services with
explicit, machine-understandable conceptual
models.

However, we clearly can’t rely on providers
to describe their data in machine-understandable
form. If they had seen an added business value
in it, they would have done it years ago with
Web services. If they haven’t provided their
data even in a machine-parsable format such
as XML, they won’t provide it in machine-
understandable formats such as RDF and the
Web Ontology Language (OWL), because the lat-
ter are more complicated than the former. Enter-
prise semantics haven’t happened. Rather, we
should look to end users to be both consumers
and developers of services.

With existing approaches, end users are
unclear on where they should save their own
semantic annotations, or how they can share
them with others, and they can’t change provider-
owned webpages. Furthermore, as is the case
with most programming, even those program-
mers who can manage formal ontologies have
found it easier to develop their own rather than
reuse existing ones. Experience with the Seman-
tic Web Services Challenge5 showed that over
a five-year period, almost no one could simply
reuse a previously successful ontology without
close collaboration with its authors.

An Alternative to
the Top-Down Semantic
Web of Services
Sudhir Agarwal • Karlsruhe Institute of Technology

Charles Petrie • Stanford University (emeritus)

IC-16-05-Peer.indd 2 7/10/12 10:23 AM

An Alternative to the Top-Down Semantic Web of Services

SEPTEMBER/OCTOBER 2012� 3

Various approaches have sought
to solve this problem, the most cur-
rent of which is linked data and
services, which seeks to address it
by completely separating webpages
from semantically described data.6
The Linked Data Services project7
seeks to build on this technique’s
popularity to produce semantic descrip-
tions for services. The extent to
which enterprises will use this tech-
nique is still unclear. However, by
taking this approach, linked data
pushes end users almost completely
out of the picture.

Processes not
Data: Principles
Explicit ontologies are neither nec-
essary, sufficient, nor feasible — as
anyone who has tried to write or
consume a formal ontology knows.
However, by considering how peo-
ple actually use the Web, a differ-
ent approach for end users becomes
obvious. Rather than the top-down
approach of ontologies in the Seman-
tic Web, we advocate a bottom-up
approach beginning with websites
and the end users who browse them
using standard browsers. Website
owners aren’t involved, and annota-
tions consist of exactly those neces-
sary for a particular application.

The Web is no longer simply a
set of documents. Rather, it’s a set of
distributed and networked processes
that can require multiple interac-
tions with the user during execution.
These processes deliver information
and might cause effects in databases
and in the physical world. But many
of these processes currently exist
only in the minds of end users.

To access information or func-
tionality hidden in the “deep Web,”
users must often perform several
steps — for example, submitting Web
forms with certain values and click-
ing links in a certain order. Semantic
approaches that focus on brows-
ing miss this important fact. Due to
their underlying data-oriented view,

the Semantic Web and linked data
largely fail to deal with the deep
Web, especially for end users.

Once a user has tediously found
the right path through a sequence
of websites for a particular goal, he
or she should be able to find it much
faster and easier the next time. Sav-
ing the process consisting of these
steps in a reusable way is thus valu-
able. Another reason that it is the pro-
cess rather than the data that should
be cached is that the paths that lead
to information or functionality don’t
change as frequently as the informa-
tion or the functionality themselves.8

This crucial insight that it is the
browsing processes that are valuable
and should be saved, rather than the
resulting data, informs the following
principles of our approach to a new
kind of semantic application:

•	 Build descriptions on already use­
ful applications. Users should have
useful applications in the first place,
rather than be made to reuse seman-
tics for applications unknown when
those semantics were developed. In
fact, users know what they want to
do, and the steps that they take to
get their results constitute existing
valuable applications.

•	 Make users’ implicit browsing
processes explicit. These existing
applications can be made explicit
by capturing the steps that people
take to extract website informa-
tion repeatedly.

•	 Make these browsing processes
sharable. People other than the
developer should be able to reuse
process descriptions, making a
completely new type of informa-
tion available on the Web that
until now resided only in the
minds of end users.

•	 Use natural language descriptions.
Explicit descriptions of browsing
processes should have a human
readable syntax so that end users
can find and comprehend them at
a later stage.

•	 Make the processes composable.
Users should be able to search
suitable scripts that they can
directly invoke or use as compo-
nents in script compositions.

Semantic applications should create
semantics. If useful browsing pro-
cesses can be integrated with one
another for new useful applications,
users will have an incentive to agree
on standard terms with constrained
usage — that is, they will develop
semantics.

Web Automation:
One Approach to
Bottom-Up Principles
At the Karlsruhe Institute of Tech-
nology (KIT), we’ve experimented
with these bottom-up principles and
have developed proof-of-concept
prototypes that convince us they’re
feasible. The basic approach is to use
scripting for Web automation.

A script is a process that coordi-
nates the execution of a set of websites
and the data flow among them. Scripts
can simulate users’ actions in a Web
browser (such as clicking, selecting,
or entering text) to automate navi-
gation between webpages and Web
form submissions, essentially making
large keyboard macros. Web automa-
tion tools let users access deep Web
resources. Users without previous
programming experience can develop
Web automation scripts using natural
language commands and program-
ming by demonstration.9 This makes
any user a potential script developer.

Script Creation
A user creates a script to accelerate
his or her ability to navigate a group
of websites and thus carry out or solve
a recurring task. A browser plug-in
that can record a user’s browsing
actions can create a script contain-
ing those actions and the order in
which they should execute. To make
the script usable even with different
input values, as well as for privacy

IC-16-05-Peer.indd 3 7/10/12 10:23 AM

Peering

4	 www.computer.org/internet/� IEEE INTERNET COMPUTING

reasons, the user can replace the
constant input values with variable
names. Because a script is directly
executable, the user can always run
a newly created script to test it before
saving it in the script repository.

We’ve found it useful to start
with open source Web automa-
tion script frameworks such as the
IBM CoScripter (http://coscripter.
researchlabs.ibm.com/) and then
identify lacunae. The CoScripter sys-
tem executes scripts and provides
a language for simplifying “screen
scraping.” People can immediately
use scripts others have developed
because they’re a form of controlled
natural language that make under-
standing and testing easy. Users can
access and navigate the script repos-
itory using the browsing interface,
and can access existing descriptions
and refine them with the browser
editor.

CoScripter doesn’t offer all the
functionality we need. The lan-
guage doesn’t support instructions
for aligning newly extracted infor-
mat ion to the a lready extracted
information, nor are the databases —
called “scratchtables” — persistent.
We might need persistent scratchta-
bles for integration across scripts
because they provide a standard
way of associating variables with
data in websites and sharing these
associations as well as informa-
tion extracted from websites with
other users. Additionally, a library
of operations is necessary for trans-
forming the data from one format
to another — for example, a tem-
perature value in Fahrenheit to its
Celsius equivalent. Unfortunately,
we believe IBM has missed a bet by
ceasing development on CoScripter
when it needed only a few more fea-
tures to be widely useful.

Script Integration
with Common Functions
At KIT, we’ve used several prototypes
to experiment with these ideas; one

that showed that a portal of inte-
grated scripts is feasible for find-
ing the cheapest airline flights has
proven particularly successful (see
http://km.aifb.kit.edu/sites/fairmarket/
hubInputForm.html). Others can use
this portal to link their scripts, add
new websites to a script, or add new
scripts to a composite script.

The main challenge for composi-
tion is coordinating the data and
control f low among multiple con-
currently running scripts, where
each script can invoke more than
one website or even other (compo-
nent) scripts. If a data connection
exists between two scripts, the data
coming from the first script must be
transformed into the second script’s
format on the fly.

In our airline flight portal proj-
ect, we’ve demonstrated that end
users will make the effort to unify
variable names in return for being
able to re-use standard conversion
functions in the portal. This not only
addresses the data conversion prob-
lem but also distributes the effort of
mapping script variables to all users
instead of concentrating it only at the
script’s developer. A future objective
is for everyone to be able to extend
the functions library. In the portal,
end users also have access to a basic
set of data transformation functions.

Bottom-Up Emergence
of Semantics
The script-based automations described
so far aren’t Web services (http://
tinyurl.com/webservdef) because they
run client-sided and have no machine-
readable descriptions; yet there is actu-
ally a use for shared semantics and
thus a reason such semantics will arise.

For one thing, variables in differ-
ent scripts must be shared for script
integration to occur. As mentioned,
shared library functions provide an
incentive for users to do this stan-
dardization and do it distributively.

Subclass relationships will arise
naturally, as we can see in the

following scenario. Suppose that Joe
has a script Mypeeps that searches
for all faculty members in a given
department at a given university. Joe
uses the variable FacultyMember to
define the members of the resulting
sets. Joe would like to standardize
based on the date of the last pub-
lished work.

Jack has a script Birthdays that,
given the Location by country of a
Person, converts their Birthday to
US format, and Joe would like to use
this function for the last publication
date of the faculty members. First,
Joe realizes that he must adjust his
script to extract the Location of the
universities and perhaps use another
function that returns the country
given the city and postal code. Joe
could just change LastPublication­
Date to Birthday in his script (as
in the airline portal) and reuse the
date function, but this would be the
semantically wrong approach.

For tunately, the persistent
scratchtable function has been
extended to include class relation-
ships. Joe states that LastPublication­
Date is a subclass of Date, and
coordinates with Jack to do the same
with Birthday so that both scrips can
use the same function. Thus a com-
munity and semantics arise because
there is a reason for them to do so.

T he experiments at KIT convince
us that scripting is a power-

ful mechanism that can lead to a
community-developed semantics as
an alternative to top-down formal
semantics. We encourage everyone
to experiment with scripts, using
the principles we’ve espoused in this
article to develop practical semantic
Web-based services.

Clearly, much work remains to be
done. Future work includes the issue
of how best to represent such simple
variable names in the functions that
scripts use, and perhaps use these
as keywords in search. We’re also

IC-16-05-Peer.indd 4 7/10/12 10:23 AM

An Alternative to the Top-Down Semantic Web of Services

SEPTEMBER/OCTOBER 2012� 5

studying whether and how the actual
flows in the scripts might be reified.
Giving scripts URIs seems like a
good idea. With appropriate meth-
ods for analyzing scripts, providers
could draw important guidelines for
improving their websites and develop
innovative ideas for new ones.

One important limitation of this
approach is that since we have no
machine-readable descriptions, auto-
mated Semantic Web service compo-
sition isn’t applicable. But this could
change with enough people research-
ing the problem from a user perspec-
tive. For instance, it might turn out
that some formal languages, such
as Datalog or process calculi, might
be good ways to capture browsing-
based processes.

Approaches other than scripting
could also work: this is only one
method that seems likely to work. We
advocate holding workshops to collab-
orate on different methods for seman-
tic applications that create semantics
from already useful Web applications.

It’s a promising approach that is
very likely to gain momentum in
contrast to the Semantic Web and
has the potential to empower users to
be an emergent collective of devel-
opers, as Tim Berners-Lee originally
intended.�

References
1.	 M. Hepp, “Semantic Web and Semantic

Web Services,” IEEE Internet Computing,

vol. 10, no. 2, 2006, pp. 86–88; www.

heppnetz.de/files/ieee-ic-no-sw-without-

sws-final-official.pdf.

2.	 T. Berners-Lee, J. Hendler, and O. Lassila,

“The Semantic Web,” Scientific Am., vol. 184,

no. 5, 2001, pp. 34–43.

3.	 C. Petrie, “The Semantics of Semantics,

IEEE Internet Computing, vol. 13, no. 5,

2009, pp. 80–82; www-cdr.stanford.edu/

~petrie/online/peer2peer/semantics.pdf.

4.	 D. McDermott, “A Critique of Pure Rea-

son,” Computational Intelligence, vol. 3,

no. 1, 1987, pp. 151–160; http://dx.doi.

org/10.1111/j.1467-8640.1987.tb00183.x.

5.	 C. Petrie et al., Semantic Web Services

Challenge: Results from the First Year,

Springer, 2008.

6.	 C. Bizer, T. Heath, and T. Berners-Lee,

“Linked Data — The Story So Far,” Int’l J.

Semantic Web and Information Systems,

vol. 5, no. 3, 2009, pp. 1–22.

7.	 S. Speiser and A. Harth, “Integrating

Linked Data and Services with Linked Data

Services,” Proc. 8th Extended Semantic Web

Conference, Springer, 2011, pp. 170–184.

8.	 S. Agarwal, “iBookmarks: Synthesis and

Execution of Solution Templates for Effi-

cient Usage of Recurring Web-Process

Combinations,” Proc. 5th IEEE Int’l Conf.

Semantic Computing, IEEE Press, 2011,

pp. 35–38.

9.	 A. Cypher et al., No Code Required: Giving

Users Tools to Transform the Web, Morgan

Kaufmann, 2010.

Sudhir Agarwal is a senior researcher and

project leader at the Karlsruhe Institute of

Technology, Germany. His research inter-

ests include distributed service-based

systems, semantics, ontologies, process

calculi, and temporal logics. Agarwal

has a PhD in computer science from the

University of Karlsruhe (now part of

KIT). Contact him at sudhir.agarwal@

kit.edu.

Charles Petrie retired from Stanford Univer-

sity as a senior research scientist with the

CS Logic Group. He is a guest professor

at Karlsruhe University, Germany, and at

the University of St. Gallen, Switzerland,

for 2012. Petrie has a PhD in computer

science from the University of Texas at

Austin. He was a founding member of the

technical staff of the MCC AI Lab, found-

ing editor in chief of IEEE Internet Com-

puting, founding executive director of

the Stanford Networking Research Cen-

ter, and founding chair of the Semantic

Web Services Challenge. Contact him at

petrie@stanford.edu.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-16-05-Peer.indd 5 7/10/12 10:23 AM

