
NOVEMBER/DECEMBER 2009	 1089-7801/09/$26.00 © 2009 IEEE	 Published by the IEEE Computer Society� 93

Peering

I ’ve been asked to give a keynote at the IEEE
Semantic Web Services in Practice confer-
ence (http://datam.i2r.a-star.edu.sg/swsip09),

so I’m sharing my initial thoughts on the sub-
ject. I’ll add more detail at the talk, but I hope
that readers of this column will give me feed-
back before then.

Defining Terms
The title of this column might seem almost like
an oxymoron to some, but we need to under-
stand the terms better to have a discussion.
Regular readers know I’m fond of precise defi-
nitions, so let’s start deconstructing the terms.

I use “Web services” in the narrow scope
I’ve previously defined (“No Science without
Semantics,” July/Aug. 2007), which includes
but isn’t limited to WSDL (www.w3.org/TR/
wsdl), and excludes REST (www.w3.org/TR/
ws-arch/#relwwwrest) but includes SA-REST
(ht tp://knoesis.org/research/srl/standards/
sa-rest). There’s a key difference between Web
services and well-known technologies such as
RPCs that justifies a distinction: Web services
advertise a description of the service that’s
machine readable over standard Internet proto-
cols so that a human and possibly a program can
understand how to use the service, at least to the
extent of knowing what messages are legal.

To clarify, I’m not talking about Web-based
services. You can easily order a book from
Amazon using your browser. That’s not a Web
service. Perhaps it uses a Web service in the
background, but then where’s the added value
of the Web service technology for the user? And
where, then, is the functional difference that
would justify the distinction of a new term such
as “Web service?”

 This technical distinction is independent
of the implementation detail of the commu-

nications protocol used, such as SOAP (www.
w3.org/TR/soap). And yes, this definition of
“Web service” is different from that of the
W3C’s, which also calls REST a Web service.
However, the W3C definition is either so broad
or so protocol-specific that it doesn’t warrant
a designation as a new technology. Worse, not
focusing on the service descriptions, the feature
that distinguishes Web services as a technol-
ogy, creates implementations with impover-
ished service descriptions that are no better
than just using remote procedure calls (RPCs).
OK, I hope I’ve beaten that into the ground in
previous columns.

It’s the word “practical” that requires a lot of
deconstruction: practical to whom and for what
purpose? Web services should provide a “ser-
vice” to someone, so it’s key to understand the
service consumer and use case.

Impractical Enterprise Services
Large enterprises have extensively implemented
WSDL Web services for years as a software
engineering technique. This has the immediate
advantage of converging upon a stack of tech-
nologies required to implement them, which has
the advantage of making programmers more of
a commodity. Do you know WSDL, XML, and
SOAP? Can you use axis2? Apache? Good —
you’re hired, for now. That’s practical for the
enterprises that employ them.

WSDL also facilitates the concept of software
components, which could lead to the program-
ming dream of reusable, maintainable software.
Well, it could, were these components’ functions
better described. Unfortunately, programmers
who use these functions within an enterprise
typically treat them like a new version of sub-
routines. The next programmer hired to work on
one of these components hasn’t much more of a

Practical Web Services

Charles Petrie • Stanford University

Peering

94 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

clue how to use it than he or she did
with any other piece of software.

Actually, it’s worse than this. The
services I’ve seen are internal soft-
ware components with the WSDL
automatically generated by other pro-
grams, resulting in tens of pages of
WSDL code useful only to other spe-
cific programs. And this is because
entire processes have been converted
to a Web service. Of course, it would
be impossible to provide an under-
standable description of such a huge,
monolithic service, thus negating
the very feature of Web services that
distinguish them from RPCs.

It’s equally impossible for some
other program to understand how
to use this component automati-
cally, a really long-range vision of

software engineering that would
prove practical for dynamic soft-
ware configuration and repurposing.
WSDL per se isn’t terrific for these
purposes, though it seems an incre-
mental improvement over ad hoc
subroutines. So, there’s some teeny
tiny bit of practicality here, just not
as much as there might be. (With
what? If you don’t already know,
thank you for your patience.)

OK, what about Web services on
the open Internet? There are few, if
any, practical Web services.

Amazon services are practical to
the extent that a third-party retailer
can use them, and such retailers do.
But they have to study Web docu-
mentation. This is because the doc-
umentation is lacking in the WSDL
itself. For instance, a programmer
might like to know Amazon’s prod-

uct categories. In principle, this
would be in the WSDL.

It’s not: it’s only on the human-
only readable Web. If Amazon
changes its product categories, the
programmer would know only by
reading the online documentation,
were it to actually change. Again, the
chief advantage of Web services isn’t
being used. And you might notice
that Google has moved away from
Web services to better programming
tools, such as Ajax.

Impractical
End-User Services
Practical means the service does
something useful, it’s easily acces-
sible with some standard software
client, and it’s easy to understand

how to use the service based on the
machine-readable description. Where
are these services? If you know of
any, now’s your chance to speak up.

What about end users? Only a
nerd masochist would use the Ama-
zon Web services to buy books.

To be really useful, an open
Web service would be able to be
discovered easily by some easy-to-
use search engine, perhaps Seekda
(http://seekda.com). Now, this is
potentially a good tool. Try, for
example, searching for “hotel reser-
vation.” You get a list of WSDL ser-
vices. Click on one and you get the
list of operations of the service. Click
on one of those, and it asks you to fill
in the strings that will compose the
message and be sent to the service.
This is almost practical.

Except you don’t have a clue what

you’re being asked to enter. Click,
for example, on the “Reservations-
Service,” which is one of the services
returned in the search. Oh, wait,
there’s no description yet. Well, just
pick the first one in the results list.
Its description is “seems to be an
internal service.” And if you click on
the “Use Now” link, you have no idea
what the operations do, individually
or together. If you click on one of
them, you’re asked to enter strings
that correspond to fields that clearly
want you to enter some secret codes.
Even the previous “Reservation
Service” has operations with names
like “GetRGInfo” with a single mes-
sage field called “nRGID.”

Seekda is possibly the best prod-
uct of this kind out there. But you see
the problem, don’t you? And we have
known about this problem, and talked
about it, almost since the beginning
of the century. The solution is sup-
posed to be semantics (the answer for
which I’ve asked you previously to be
patient, if you didn’t already know).

Practical Services
Need Semantics
For either programmers or end users,
Web services have to have descrip-
tions that can be easily and pre-
cisely understood by other people,
if not machines. We need sufficient
semantics to make Web services
practical (“The Semantics of Seman-
tics,” Sept./Oct. 2009).

From where will these semantics
come? One possibility is end users.
Seekda has a nice facility that allows
people to contribute a description of a
service. Suppose that Seekda also let
people enter descriptions of operations
and message fields. That would go a
long way. Suppose these descriptions
could be formalized to some extent.
That might start to be practical.

There are a lot of traps on the
road to formalization. One is think-
ing only in terms of categories.
When you do that, you say this is
an instance of a “travel” service.

Programmers need a service description
language so they can see what a software
component written as a Web service does
and how to use it.

NOVEMBER/DECEMBER 2009� 95

Practical Web Services

The first thing that’s wrong is that
anyone can say any service fits in
any category. Maybe it’s really a
porn site. Second, this doesn’t help
you know what affect this service
really has. Does it ultimately book a
flight for you? And under what con-
ditions? We’ve gone down this path
before. It was called UDDI, and we
knew it would fail from the start for
fundamental reasons (http://logic.
stanford.edu/talks/gap).

Letting the user community con-
verge on descriptions Wikipedia-
style might be full of traps, but it’s
better than what we have. And some-
one should try that. Of course, what’s
needed is a business mode — some set
of incentives that would cause such
development. Ideas? Anyone?

While we’re talking about users,
how about writing Web services?
Where is Web 2.0 for Web services?
They’re just not going to catch on
until we make it easier for users to
write services, and this includes some
kind of description language. And I
don’t mean situational calculus flu-
ents. I mean a language in which it’s
easy to say that the service lets you
reserve a car if you’re 18 years old,
with a credit card and valid driver’s
license on a weekday between 7 a.m.
and 8 p.m. What would that language
look like? Quiz later.

Some people (a phrase widely
used by politicians) say that some
set of top-down semantics developed
by academics will solve this problem
for everyone on the Internet. I don’t
think I need to say more about this.

Christoph Bussler and I have
argued that, sadly, open Web ser-
vices are a long way off (“The Myth
of Open Web Services,” May/June
2008). Please, please prove us wrong.

Practical Enterprise
Services: A Challenge
to the SOA Architects
Back to enterprises: there’s a real busi-
ness need here. Programmers need a
service description language so they

can see what a software component
written as a Web service does and
how to use it. Otherwise, it’s just more
software. Web services with descrip-
tions could be used dynamically, and
even among enterprises, eliminat-
ing tedious process construction by
programmers from different compa-
nies. That’s how it’s done now, and it
won’t scale. That’s not practical. But
Web services without good semantic
descriptions aren’t practical either.

Users of enterprise services
need such descriptions even more.
That’s why Bussler and I argued that
“industrial service parks” will offer
Web services with useful descrip-
tions before they develop on the open
Internet. At least within an enter-
prise, there’s the possibility of con-
verging upon useful descriptions, by
fiat. And indeed, these enterprises’
customers should demand them.

But where are these enterprise
Web services now? Sigh.

Right now, Web services have
been left to the programmers, and
they’re doing what I described ear-
lier — that is, hard-coding again,
but with all of the overhead of Web
services, both in coding, implemen-
tation, and execution. A good Java
programmer can beat a Web service
designer at a complex task once, and
maybe even in changing the code to
adapt to new requirements. Further-
more, no customer would want, or be
able, to use the enterprise services as
they exist today.

I challenge enterprise architects
to rethink how enterprise services
should work if they’re to be prac-
tical — that is, used by their cus-
tomers as well as reused by their
own programmers. Yes, it will cost
resources, but there will be no suc-
cessful use of Web services without
a massive effort. In industry, we call
this an “opportunity.” But it’s an
outright challenge to the people who
say they’re working on a “service-
oriented architecture.”

Speaking of challenges, I’ve pre-

viously mentioned the Semantic Web
Services Challenge (SWSC), of which
I was the founding chair. This, I’m
happy to say, has moved forward. It’s
now sponsored and run by the new
EU Semantic Evaluation At Large
Scale (SEALS) project. The SWSC
remains a good test of technologies
for Web services that purport to be
practical. We have a sandbox of Web
services, informal descriptions of
them, and problems to be solved. If
you think you have a good language
for annotating/describing Web ser-
vices, come see if they’re practical
for solving our problems, which are
practical indeed. It’s hard — that is,
it’s a challenge. But the SWSC is a
good testbed out of which we might
discover some good answers.

Service Descriptions
Should Be Enforceable
My colleague Bussler points out
that semantics are increasingly rec-
ognized as important for software
engineering. Some of the seman-
tics needed for Web services are
more than just a description of the
message types — the pre- and post-
conditions for using the service. This
is now part of the Eiffel program-
ming language (http://en.wikipedia.
org /w i k i /E i f fe l _ (prog ramming
_language)). Why have program-
ming languages moved on and Web
services have not?

Bussler and I think an important
answer is execution. Today, service
descriptions are entirely separate
from the code. In Eiffel, the descrip-
tions are used by the compiler to
ensure that the code execution
conforms to the description. Using
POEM-style computational logic for
writing both service descriptions
and code is a long-range answer.
But doing something more Eiffel-
like would be a major step forward
from the current state of the art. We
academics tend to work on ontologies
that should, somehow, describe ser-
vices and leave it at that. Not very

Peering

96 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

useful, is it? Modeling without exe-
cution rarely is.

I’ve been largely discussing WSDL
Web services. But all of the issues
apply to SA-REST as well. It might
well be that SA-REST is a simpler
technology that will catch on with at
least end users. If not, enterprises and
WSDL will fade away. Maybe. But the
fundamental issues of developing
description languages that people, if
not machines, can easily understand
remain just as difficult for SA-REST
as for WSDL. The core issue is the
nature of the service descriptions,
not the service technology.

Web services as they stand today
aren’t very practical. The only good
news is that most enterprise software,
as it’s done today, isn’t very practi-
cal either, especially as enterprises
have to exchange more information
among themselves with larger and
more dynamic systems. Web ser-
vices with semantic and enforce-
able descriptions that would enable
dynamic interoperability over the
Internet, would be more practical.

The Future
with Practical Web Services
There’s a huge potential for enterprise
Web services. For example, custom-
ization is a problem for enterprises
that provide big software systems.
Why should Fred install version two
when he’s done a lot of customiza-
tion work on version one? How much
testing will be required to get a new
customized version of the system to
work? And what does “work” mean?

There’s another way to do this,
which we’ve outlined in the Policy-
Oriented Enterprise Management
(POEM) project at Stanford (http://
logic.stanford.edu/POEM). Given a
good formal description of the Web
services that compose versions of a
system, as well as of the user’s busi-
ness logic, in theory, you can math-
ematically construct a provably
correct set of new processes that do
what the old ones did. Yes, this is a

long ways off, but it’s possible. Elim-
ination of new version testing would
be a very practical use of Web ser-
vices. But even with today’s software,
there’s a huge potential for enforce-
able good service descriptions.

Imagine that individuals as well
as enterprises could set up virtual
supply chains as needed, just by
stating requirements and having a
discovery and composition engine
arrange the right connections among
services. This would be practical
with the right service descriptions.
Compare this with what develop-
ers, sometimes from different com-
panies, have to do today to write a
BPEL process.

T here’s a future for some form
of Semantic Web services in

which we can all program the world
using super browsers that might be
thought of as “world wide wizards”
(http://news-service.stanford.edu/
news/2007/may2/petr ie-050207.
html). We already have almost all of
the necessary technology. We need
to realistically understand, collec-
tively, the barriers to this vision and
work to overcome it to make Web
services practical as a step toward
this vision. If we don’t address those
issues and find a way to get industry
investment in semantic descriptions,
then Web services remain, unfortu-
nately, as they are now: impractical.
�

Charles Petrie has been a senior research sci-

entist at Stanford University since 1993.

His research interests include concurrent

engineering, virtual enterprise manage-

ment, and collective work. Petrie has a

PhD in computer science from the Univer-

sity of Texas at Austin. He is EIC emeritus

and a member of IC’s editorial board. Con-

tact him at petrie@stanford.edu.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

www.cisco.com

Cisco Systems, Inc. is accepting resumes
for the following position in:

Lawrenceville, GA

Senior Network Engineer
(Ref#: LV)

Responsible for the operational support of internal
network systems.
Please mail resumes with reference number to
Cisco Systems, Inc., Attn: J51W, 170 W. Tasman Drive,
Mail Stop: SJC 5/1/4, San Jose, CA 95134. No phone
calls please. Must be legally authorized to work in
the U.S. without sponsorship. EOE.

www.cisco.com

Cisco Systems, Inc. is accepting resumes
for the following position in:

Irvine, CA

Network Engineer
(Ref#: IRV4)

Provides operational support of internal network
systems. Interface with Service Provider on a
needed basis to isolate, debug and confirm
product.
Please mail resumes with reference number to
Cisco Systems, Inc., Attn: J51W, 170 W. Tasman Drive,
Mail Stop: SJC 5/1/4, San Jose, CA 95134. No phone
calls please. Must be legally authorized to work in
the U.S. without sponsorship. EOE.

