
Peering
Editor: Charles Petrie • petrie@stanford.edu

MARCH/APRIL 2013	 1089-7801/13/$31.00 © 2013 IEEE	 Published by the IEEE Computer Society� 91

T he German saying “von Palästen zu Zelten”
compares different systems to different
levels of flexibility and agility — that is,

“from palaces to yurts.” Requirements engineer-
ing systems are geared for developing informa-
tion system palaces and aren’t what’s needed for
today’s world of rapidly changing, app-enabled
products. These Web and mobile apps are small,
require rapid development, must closely fit cus-
tomer needs, and change often. Requirements
engineer ing for these would greatly ben-
ef it from design thinking — that is, a human-
centered, rapid-prototypying method for inno-
vative design.

All house construction requires a solid base-
ment, a supporting infrastructure that provides
efficiency in maintenance, and some adjustable
elements that will be continuously updated for
the house’s lifetime. Large, complex houses pro-
vide more comfortable living space, but more
groundwork is needed if any changes are nec-
essary. IT systems are similar. To meet today’s
challenges with small, easily changed systems
that are more function than infrastructure,
we need more that are like yurts rather than
palaces.

Evolving Apps
In the first phase of Internet application devel-
opment for products and services, such appli-
cations used the Web to provide a front end
to simple functions, such as looking up stock
quotes or current weather. In the second phase,
the Web acted as a front end to large, integrated
back-end systems. These systems require the
typical requirements engineering approach —
long, careful study and development. How-
ever, the new generation of apps is loosely
bound to back-end systems, if any, and employs

algorithms that can easily run on mobile devices
as well as the Web.

One example is the Azumio Stress Tester,
which uses a sophisticated algorithm to mea-
sure variations in pulse to determine stress
or conditioning (see https://play.google.com/
store/apps/detai ls?id=com.azumio.android.
stresscheck&hl=en). The PeakFinder uses GPS
and compass data to determine a person’s posi-
tion and his or her relation to mountains (www
.peakfinder.org). Such apps also connect to back-
end systems on the Web, but only loosely, and
they can run without a connection.

Although large back-end systems will con-
tinue to be needed, an emerging trend is that of
app-enabled products. Increasingly, many prod-
ucts, both software and tangible, are released
and accompanied by Web or mobile apps that
add value. Even taxis benefit from today’s apps,
which we can use to look for parking spaces or
share cars. One example originates from Nobel
Biocare, a dental solutions company: OsseoCare
Pro is a tablet-based app that lets a dentist control
his or her drill motor and work with the patient
to plan and set up the treatment sequence prior
to surgery; it also enables multiple user log-
ins for sharing treatment data between differ-
ent clinical partners (see www.nobelbiocare
.com/en/campaigns/osseocare/default.aspx).
Even these complex apps are small and run on
small mobile devices independently of larger sys-
tems such as databases that might be sporadically
reachable on the Web for updating and sharing.

We can expect apps to become more inte-
grated with future products. Imagine, for exam-
ple, drones that make small deliveries, homing
in on the smartphone requesting them. These
apps would be small programs, often updated
via cellular marketplaces, that provide limited

From Palaces to Yurts
Why Requirements Engineering
Needs Design Thinking
Christophe Vetterli, Walter Brenner, Falk Uebernickel,
and Charles Petrie • University of St.Gallen

IC-17-02-Peer.indd 91 3/7/13 1:40 PM

Peering

92	 www.computer.org/internet/� IEEE INTERNET COMPUTING

functionality and connect to larger
systems on the Web asynchronously,
perhaps connecting to other users’
similar apps while adding value to
mobile devices and tangible prod-
ucts. The apps might exchange data
over various channels and push data
as well as make connections. These
apps won’t be at all like the big back-
end systems that current require-
ments engineering supports.

Requirements Engineering
Approaches
The primary measure of an informa-
tion system’s success is the degree to
which it meets its original purpose.
We can define requirements engi-
neering as the process of initially
discovering and defining that pur-
pose.1 As Pamela Zave states,

“Requirements engineering is the branch
of software engineering concerned with
the real-world goals for, functions of,
and constraints on software systems. It
is also concerned with the relationship
of these factors to precise specifications
of software behaviour, and to their evo-
lution over time and across software
families.”2

Thus, we can view requirements
engineering as inherently difficult.
Betty Chen and Joanne Atlee state
that requirement analysts start with
ill-defined, and often conflicting,
ideas.3 By simplifying this problem
space, we can constrain the environ-
mental conditions in which the sys-
tem or applications should operate.
The requirements engineering pro-
cedure is more iterative and involves
many more players with different
backgrounds than other software
engineering activities. Besides this
complexity, requirements engineer-
ing needs more extensive analyses of
options and must call for more com-
plex verifications of more diverse
components, such as technological,
human, legal, and cultural. In the
app context, which changes rapidly,

the challenge will be to redefine this
process.

We’ve obser ved many global
companies educating their develop-
ers to devote all their efforts toward
those aspects of software develop-
ment that are intended to last for
eternity, such as achieving the high-
est possible security capability and
being available 24/7. Such back-end
systems are based on big data mod-
els, have a long-lasting life cycle,
and assume that users are technical.
The goal is to develop a system as
complete as possible and integrate
all possible functions to kill two (or
more) birds with one stone. The result
is something like a palace, built on a
strong foundation with a large fixed
infrastructure where everything
works together and would be diffi-
cult to change.

The neighborhood has changed,
however, and the concrete and crane
that were used to build palaces are
no longer needed to build the mobile
and agile community of apps that
are more like yurts. It isn’t that some
large back-end systems aren’t needed
or that they won’t connect to apps,
but rather that app development
isn’t supported by the requirements
engineering process used to develop
these large systems.

Look at your own experience in
downloading an app from any smart-
phone app marketplace. It installs
within minutes, its focus serves
exactly what you were looking for,
and, if not, you download another
one. Moreover, you can set the app
for automatic updating, and prob-
ably will, given that many apps are
updated frequently. App users require
speed, frequent change, convenience,
and limited functionality. The game
has changed, and the rules are differ-
ent. Apps are small, stand alone with
few intertwining functionalities,
and run quickly on small computers.
These changing demands are critical
for business. If companies don’t catch
up with the new app environment,

their back-end software house will
be a lonely palace standing some-
where hundreds of miles away from
the next palace with hardly any con-
nection to users.

Today, users expect a wide selec-
tion of apps that they can integrate
into their daily lives and behavior.
Developing such apps requires flex-
ibility, agility, and strong customer
orientation. Companies now face the
challenge of producing app-enabled
products — such as OsseoCare Pro or
PeakFinder — that have a few inte-
grated functions that are highly rel-
evant to the user’s life.

The problem the software engi-
neering community has been trying
to solve from its beginning is how
to go from the problem space (user
requirements) to the solution space
(design and implementation) with a
methodological guidance. Require-
ments engineering processes usually
include following steps — elicitation,
analysis and negotiation, specifica-
tion, and validation — as a standard
way to solve this problem.

The IS community has already
recognized that for a changing world
and fast development — which apps
take to an extreme — this approach
isn’t sufficient, resulting in so-called
agile development approaches. These
alternative processes certainly have
advantages, but they tend to throw
out the baby with the bathwater,
especially for apps that need to con-
nect to back-end systems.

Agile development tends to focus
on code traceability rather than
the documentation characteristics
of large system development. It
involves the customer in interactive
prototypes throughout the develop-
ment process, whereas requirements
engineering tends to drop customer
involvement after initial elicita-
tion. Agile development is driven by
customer descriptions of what they
require, but captures these from a
functional requirements perspective
only. Even with a strong customer

IC-17-02-Peer.indd 92 3/7/13 1:40 PM

From Palaces to Yurts

MARCH/APRIL 2013� 93

orientation and good developers, the
distinction between functional and
nonfunctional requirements is dif-
ficult to catch and needs other per-
spectives. For apps that connect to
back-end systems, combining the
two approaches is especially crucial
because the same developers working
on the palace of software comprising
the company’s operations are often
the ones assigned to develop the
mobile app yurts. So, the question is
how to improve requirements engi-
neering to incorporate agile develop-
ment’s useful features in a way that
supports app development, perhaps
in concert with large system devel-
opment. We need a method that com-
bines the best of both approaches.4

Design Thinking
Design thinking provides a method-
ology for eliciting customer needs,
rather than requirements, and pro-
ducing a series of fast and simple
prototypes that eventually converge
on innovative solutions. Research-
ers at Stanford University have been
studying, testing, and modifying this
methodology in product design for
the past 40 years. The methodology
has been abstracted and has spread
to other universities, such as Aalto,
Potsdam, and St. Gallen. It’s been
incorporated into practices at large
companies such as Deutsche Bank,
Proctor and Gamble, and SAP. Design
thinking is consistent with the initial
elicitation practices of requirements
engineering and the rapid prototyp-
ing and customer involvement of
agile development methods. It offers
a consistent methodology for doing
both as well as documentation, con-
sistent with requirements engineer-
ing, and team management, a focus
of agile development.

Design thinking emphasizes the
human perspective. We apply this
human-centered innovation method
to ill-defined problems within a real-
world context, which is character-
istic of apps for mobile phone users.

Creating desirability for potential
customers drives design thinking
activities and captures potential
customers’ needs. Unlike require-
ments engineering, design thinking
aims to fail early in order to succeed
sooner. This learning process doesn’t
focus on searching for requirements
specifications even in terms of agile
methods. Rather, it involves quickly
learning from early errors how best
to articulate and solve human needs.

Starting with quick, low-resolution
protot ypes he lps design teams
diverge within the design space
to avoid settling on solutions that
might only be local maxima in the
solution space and might not actu-
a l ly meet human needs . Design
thinking moves from such inten-
sive learning phases toward higher-
resolution prototypes that converge
on novel solutions.

Such prototypes help concretize
different ideas without simplify-
ing the environment, while focus-
ing on specific and important needs
within the design space. Although
agile development and requirements
engineering use prototypes as well,
these mainly help converge and
eliminate technical inconsistencies
as fast as possible early in the pro-
cess. Although it involves the cus-
tomer throughout the process, agile
development has no methodology for
eliciting needs that might be other
than the stated requirements and,
again, tends to focus on code consis-
tency and traceability. Design think-
ing offers an additional elicitation
methodology.

Design thinking is also about
changing the involved parties’
mindsets — that is, keeping ambiguity
high during the projects’ early stages
until developers are certain of iden-
tified needs and desires. Thus peo-
ple are needed that can handle this
ambiguity and have empathy for
their potent ia l customers. This
requires an environment that supports
a collaborative, engaging working

style with customers as part of the
team. At Stanford, this team makeup
aspect is already being employed
in design thinking research, with a
working environment often charac-
terized by substantial collaborative
space, including discussion-enabling
areas as well as quickly reachable
prototyping space. One recent result
from Stanford indicates that teams
function better without a designated
leader and with certain personality
types and particular documentation
styles over others.

We can illustrate industrial expe-
riences with customer-centric design
thinking via two successful exam-
ples. First, one credit-card company
from Switzerland solved a customer
relationship management problem
by using design thinking to produce
a novel tablet app for its customers.
Second, a major automobile manu-
facturer wanted to rethink mobility
and used design thinking to develop
a tablet app that helps move cus-
tomers from one location to another
with different forms of transporta-
tion. Neither requirements engi-
neering nor agile development were
well-suited to these tasks, although
some form of each was naturally
used to develop the sof tware. It
was the holistic approach that was
successful.

A pps are a major new type of soft-
ware component, especially as

the Internet of Things becomes the
app-enabled world. Companies that
wish to play in this world must estab-
lish the right environment for their
workforce. Merging design thinking
with requirements engineering and
agile development will let them con-
sider the strongly diverging human-
oriented working mode as well as the
more technically driven perspectives
of the other two methodologies. The
HPI in Potsdam is already research-
ing combining design and engineer-
ing by injecting design thinking into

IC-17-02-Peer.indd 93 3/7/13 1:40 PM

Peering

94	 www.computer.org/internet/� IEEE INTERNET COMPUTING

requirements engineering, and at
St. Gallen, we’re beginning a major
initiative in this area, focusing on
app development and management.
We’re aware that we have an inten-
sive and exhausting journey ahead,
and we invite others to join with us
in this exciting exploration.�

References
1.	 B. Nuseibeh and S. Easterbrook, “Require-

ments Engineering: A Roadmap,” Proc.

Conf. Future of Software Eng. (ICSE 00),

ACM, 2000, pp. 35–46.

2.	 P. Zave, “Feature Interactions and Formal

Specifications in Telecommunications,”

Computer, vol. 26, no. 8, 1993, pp. 20–29.

3.	 B.H.C. Chen and J.C. Atlee, “Research

Directions in Requirements Engineer-

ing,” Proc. Future Software Eng. (FOSE 07),

IEEE CS, 2007, pp. 285–303.

4.	 F. Paetsch, A. Eberlein, and F. Maurer,

“Requirements Engineering and Agile

Software Development,” Proc. 12th IEEE

Int’l Workshop Enabling Technologies:

Infrastructure for Collaborative Enterprises

(WETICE 03), IEEE, 2003, pp. 308–313.

Christophe Vetterli is a research associate at

the Institute of Information Management

at the University of St. Gallen (HSG). His

PhD research is in embedding design

thinking into the corporate IS environ-

ment. Vetterli has an MA in business

innovation from HSG. Contact him at

christophe.vetterli@unisg.ch.

Walter Brenner is a professor of information

management and the managing direc-

tor of the Institute of Information Man-

agement at the University of St. Gallen

(HSG). His research focuses on the inter-

section of business and information tech-

nology at the executive level. Brenner

has publ i shed more t han 25 book s .

Contact him at walter.brenner@unisg.ch.

Falk Uebernickel is an assistant professor at

the Institute of Information Management

at the University of St. Gallen (HSG).

His research focuses on business inno-

vation and information management.

Uebernickel has a PhD in business

administration from HSG. Contact him

at falk.uebernickel@unisg.ch.

Charles Petrie was a guest professor at Karls

ruhe University, Germany, in 2012, and

at the University of St. Gallen, Swit-

zerland, where he will be continuing

in 2013. He retired as a senior research

scientist f rom the Stanford Univer-

sity Computer Science Department. His

research topics are concurrent engineer-

ing, enterprise management, and collec-

tive work. Petrie has a PhD in computer

science from the University of Texas at

Austin. He was a founding member of

technical staff at the MCC AI Lab, the

founding editor in chief of IEEE Inter-

net Computing, and the founding chair

of the Semantic Web Services Challenge.

He teaches and coaches in innovation via

design thinking. Contact him at petrie@

stanford.edu.
M

A
Y

•
JU

N
E

20
12

File Sharing Wars

Smartphone Sensing Systems

Mobile Insecurities

Social
Networking

Infrastructures

IC-16-03-c1 Cover-1

April 3, 2012 12:56 PM

 IEEE IN
TERN

ET CO
M

PU
TIN

G

M
AY • JU

N
E 2012

SO
CIA

L N
ETW

O
RKIN

G
 IN

FR
A

STRU
C

TU
RES

VO
L. 16, N

O
. 3

W
W

W
.CO

M
PU

TER.O
RG

/IN
TERN

ET/

ANYTIME, ANYWHERE ACCESS

DIGITAL MAGAZINES
Keep up on the latest tech innovations with new digital maga-
zines from the IEEE Computer Society. At more than 65%
off regular print prices, there has never been a better time to
try one. Our industry experts will keep you informed. Digital
magazines are:

• Easy to Save. Easy to Search.
• Email noti� cation. Receive an alert as soon as each digi-

tal magazine is available.
• Two formats. Choose the enhanced PDF version OR the

web browser-based version.
• Quick access. Download the full issue in a � ash.
• Convenience. Read your digital magazine anytime, any-

where—on your laptop, iPad, or other mobile device.
• Digital archives. Subscribers can access the digital issues

archive dating back to January 2007.

Interested? Go to www.computer.org/digitalmagazines
to subscribe and see sample articles.

IC-17-02-Peer.indd 94 3/7/13 1:40 PM

