MCC Technical Report Number ACT-AI-222-89

On the Equivalence of Constraint
Satisfaction Problems

Francesca Rossi, Charles Petrie & Vasant Dhar

MCC Non-Conflidential

December, 1989

Abstract

A solution of a Constraint Satisfaction Problem (CSP) is an assignment of values to all its variables such that
all its constraints are satisfied. Usually two CSPs are considered equivalent if they have the same solution
set. We find this definition limiting, and develop a more general definition based on the concept of mutual
reducibility. In this extended scheme it is reasonable to consider a pair of CSPs equivalent even if they have
different solutions. The basic idea behind the extended scheme is that two CSPs can be considered
equivalent whenever they contain the same “amount of information”, i.e., whenever it is possible o obtain
the solution of one of them from the solution of the other one, and vice versa. In this way, both constraint
and variable redundancy are allowed in CSPs belonging to the same equivalence class.

As an example of the usefulness of this new notion of equivalence, we formally prove that binary and
non-binary CSPs are equivalent (in the new sense). Such a proof is not possible with the usual notion of
equivalence. Two difference algorithms, currently used for transforming any non-binary CSP into an
equivalent binary one, are described. It turns out that only one of them produces a binary CSP equivalent
to the given non-binary problem, while the other one can achieve the transformation only at the cost of
adding some new arbitrary information.

Microelectronics and Computer Technology Corporation
Advanced Computing Technology
Artificial Intelligence Lab
3500 West Balcones Center Drive

Austin, TX 78759
(512) 343-0978

Copyright © 1989 Microelectronics and Computer Technology Corporation

All Rights Reserved. Shareholders of MCC may reproduce and distribute
these materials for internal purposes by retaining MCC's cop ight notice,
proprietary legends, and markings on all complete and partial copies.

On the Equivalence of Constraint Satisfaction

Problems
Francesca Rossi' Vasant Dhar?
Charles Petrie Dept. of Information Systems
MCC New York University
3500 W. Balcones Cntr. Dr. 40 West 4th Street
Austin, Texas 78759 NY, NY 10003
rossi, petrie@mce.com dhar@vxl.gha.nyu.edu

'On leave from the Computer Science Department of the University of Pisa, Pisa, Italy.
?Part of this work was done while this author was visiting MCC.

Abstract

A solution of a Constraint Satisfaction Problem (CSP) is an assignment of values
to all its variables such that all its constraints are satisfied. Usually two CSPs are
considered equivalent if they have the same solution set. We find this definition limiting,
and develop a more general definition based on the concept of mutual reducibility, In
this extended scheme it is reasonable to consider a pair of CSPs equivalent even if they
have different solutions. The basic idea behind the extended scheme is that two CSPs
can be considered equivalent whenever they contain the same “amount of information”,
i.e. whenever it is possible to obtain the solution of one of them from the solution of
the other one, and viceversa. In this way, both constraint and variable redundancy are
allowed in CSPg belonging to the same equivalence class,

As an example of the usefulness of this new notion of equivalence, we formally prove
that binary and non-binary CSPs are equivalent (in the new sense). Such a proof is not
possible with the usual notion of equivalence. Two different algorithms, currently used
for transforming any non-binary CSP into an equivalent binary one, are described, It
turns out that only one of them produces a binary CSP equivalent to the given non-
binary problem, while the other one can achieve the transformation only at the cost of
adding some new arbitrary information.

1 Introduction

A Constraint Satisfaction Problem (CSP) consists of a set of variables which can be
instantiated on a finite domain and are subject to a set of constraints. In this paper we
investigate the concept of equivalence of CSPs.

A first, naive definition of equivalence of CSPs could be:
two CSPs are equivalent if they have the same variables and the same constraints.

This approach to equivalence is very restrictive. For example, it does not consider
the possibility of redundant information in the constraints. Such redundancy, in fact,
would allow to obtain, starting with a given CSP, an infinite number of distinct CSPs by
simply taking the given one and adding redundant information. Since all the resultant
CSPs represent the same problem, they should be equivalent. However, the above given
definition is not satisfied.

To overcome this problem, we could modify the definiton of equivalence to deal with
constraint redundancy by adopting the following definition:

two CSPs are equivalent if they have the same solution

where the intended meaning of solution of a CSP is the set of all assignments of the
variables on the domain such that all the constraints are satisfied. This is the usual
definition of equivalence of C8Ps. Here, all the redundant CSPs (with respect to the
same given one) are considered equivalent. However, redundancy can occur not only in
the constraints, but also in the number of variables, i.e., it is possible that two CSPs
have different variables all behaving exactly in the same way (that is, only the names
of the variables are different). Such problems, while syntacticly different, should be
considered equivalent since their information content is essentially identical. In other
words, it is only the information content of a CSP that should matter. Accordingly, we
propose the following new definition of equivalence of CSPs:

two CSPs are equivalent if they are mutually reducible

where we say that P; is reducible to P, if it is possible to obtain the solution of P,
from the solution of P;, by mapping the variable and the values in one problem to the
variables and the values in the other problem. This definition allows both constraint
and variable redundancy, and it can be proved to be more general than the previous
definitions of equivalence.

In this paper we adopt this new definition of equivalence of CSPs and we use it
to prove formally that binary and non-binary CSPs are equivalent in this sense. Such
a result is useful not only from the theoretical point of view, but also because many
efficient solution algorithms have been developed for binary CSP only. Thus it is impor-
tant to be able to state the problem at hand as a non-binary one if necessary or more
convenient, transform it into a binary CSP, solve it (the latter), and finally be able to
go from that to the solution of the given problem. The proof that this is possible cannot
be obtained without the extended notion of equivalence.

In the literature on CSPs, the issue of the equivalence of binary and non-binary
CSPs has been addressed very vaguely. The first formal attempt to compare these two
different representations of a problem appeared in [2|, where there is an example of an
n-ary constraint which cannot be represented in terms of binary constraints between
pairs of those n variables, Thus, binary and non-binary constraints seemed not to be
equivalent in general: more precisely, non-binary constraints seemed to be more powerful
than binary ones. In reality, this is true only if we put restrictions on the number of
variables to be used in the transformed problem, or on the shape of its representation.

This paper shows that binary and non-binary constraints are equivalent by con-
sidering two transformations, well known in the constraint satisfaction “folklore”, to
transform a non-binary CSP into an equivalent binary one.

The first approach is to represent any non-binary constraint connecting k variables
with a star-like set of k binary constraints, each one connecting a new variable and one
of the original k variables. The role of the new variable is to maintain the relationship,
previously represented by the non-binary constraint, among the original k variables.
The two problems look very similar. However, not only are they not equivalent in the
usual sense, but also, using the new definition of equivalence of CSPs described above,
it is possible to show that the non-binary CSP is reducible to the binary one, but that

the opposite does not hold. Thus the two problems are not even equivalent in the new
sense. The intuitive reason is that the binary CSP is built from the given non-binary
one by adding a variable, values for its domain, and some constraints. While the binary
constraint definition can automatically be generated by the definition of the original
k-ary constraint, the variable and the domain are generated by arbitrary choices which
cannot be inverted to yield the original problem.

Thus, we describe a second approach which can be proved to produce an equivalent
binary CSP from a given non-binary one. This approach takes inspiration from Dechter
and Pearl ([1]). While trying to represent any CSP in an acyclic form (hoping that this
is easier to solve), they state informally that any non-binary CSP can be represented
as a binary one by considering its dual constraint graph. The idea is that while a CSP
is usually represented as a graph whose nodes represent variables and whose hyperares
represent constraints, in the dual graph nodes are constraints and arcs represent shared
variables. We prove that this new graph can always be seen as the representation of a
binary CSP which is equivalent to the original one in accordance with our new definition:
the given non-binary CSP and the obtained binary one are mutually reducible.

As mentioned above, the formal proof of the equivalence of binary and non-binary
CSPs is not possible with the usual notion of equivalence. However, it has been formally
proved, in the field of philosophic logic ([4]), that binary and non-binary predicates have
the same power (by showing that the approach which adds variables to produce a binary
CSP is logically equivalent to the original representation) . Thus, one approach could
be the transformation of each constraint into a predicate, which is possible, and the use
of logic tools to obtain a formal proof. This however would mean that the CSP theory
is incomplete in an important sense: the equivalence of CSPs could not be generally
expressed within the theory. The definition of CSP equivalence proposed in this paper
provides an elegant way to eliminate this incompleteness.

In summary, the new definition of equivalence of CSPs provides two different fun-
damental contributions to the constraint satisfaction theory:

e it allows the presence of variable redundancy (besides constraint redundancy,
which was already allowed by the usual notion) in CSPs belonging to the same
equivalence class, thus giving 2 more intuitive understanding of the notion of pairs

of CSPs with the same amount of information. In fact, there are only two different
ways to store information into a CSP, as a variable and as a constraint, and our
definition permits redundancy in both of them.

» it removes a source of incompleteness from the already existing constraint satisfac-
tion theory. This allows proof of an informally known result within the constraint
framework.

The paper is organized as follows. Section 2 gives basic definitions about CSPs.
Section 3 introduces our new definition of equivalence, proves some properties about
it, and gives examples of pairs of CSPs which become equivalent by using this new
definition. Section 4.1 and 4.2 describe respectively the first and the second approach
to transforming a non-binary CSP into a binary one, giving also some examples and
proving the relationship (equivalence or not) between the obtained problem and the
original one. Finally section 5 summarizes the contributions of the paper.

2 Constraint Satisfaction Problems

In this section we will give the basic definitions of constraints and constraint satisfaction
problems (CSPs). In doing that, we will basically use the same notation as in [6] and
5].

Definition 1 (k-ary constraint) A k-ary constraint connecting variables zy,...,zx
having domains Dy, ..., D, respectively is defined as a subset of the eartesian product
Dy X ... X D, and it 1s intended as the set of allowed k-tuples for these k variables. A
2-ary constraint 15 called binary. A I-ary constraint 15 called unary.g

Note that in this paper we will only consider CSPs where the variables have a finite
domain, otherwise the above definition would not be reasonable, i.e. it wouldn’t be
possible to represent each constraint in an extensive fashion.

It is not restrictive to consider the same domain for all the variables. In fact, if the
variables have different domains, then it is always possible to consider the union of all

of them as a unique domain. Thus in the following we will always consider only one
domain.

Definition 2 (CSP) A constraint satisfaction problem (CSP) P =< V,D,C, con,def >
18:

a set of variables V = {vy,...,u.};

a demain D for the variables in V;

a set of constraints C = {¢1,...,em}. C 18 a ranked set, i.e. C = U, Ck, such that
¢ € Cy 1f ¢ connects k variables;

a connection funetion
con . U{C& —* Vk}u
k
where con(e) =< vy,...,vx > 15 the tuple of variables connected by ¢;

a definition function

def : | J(Ce — p(DY)),
&

where p(D*) 1s the powerset of D¥, such that def(c) is the set of k-tuples of values
allowed for the variables connected by c g

Definition 3 (binary CSP) A CSP is called binary if all its constraints are either
unary or binary.g

Definition 4 (Solution of a CSP) The solution of a CSP P, Sci(P), is the set of all ﬂ
the tuples of values for all the variables of P such that all the constraints are satisfied,
i.e such that, for each such tuple, the projection of the tuple on the subset of variables
connected by each constraint belongs to the definition of that consiraint g

3 Extended Equivalence of CSPs

We first give the usual notion of equivalence and then we extend it by introducing the
new extended equivalence, which relies on the concept of mutual reducibility.

5

Definition 5 (Usual equivalence of CSPs) Two CSPs P, and P, are equivalent (in
the usual sense) iff Sol(Py) = Sol(P;). We will write PL=, Py

From the above definition, it is clear that two CSPs with different sets of variables
cannot be equivalent in the usual sense, because their solutions are always different.
The same observation holds also for two CSPs with different domain structure (if one
domain contains values and the other one tuples of values, they are said to have a
different domain structure). In fact, if the elements in the two domains have different
“shape”, obviously the solutions, being sets of assignments on the given domain, cannot
coincide.

Thus, we will now extend the usual notion of equivalence, because it is possible for
two problems to not have the same solution but still be representations of the same
world,

Definition 8 (Extended equivalence of CS8Ps) Two CSPs P, and P, are equivalent
(in the extended sense) if Py is reducible to Py and P, is reducible to P,. We will write
Py = Pz-l

Let us now see what we mean by “reducibility”., The idea is that a CSP, A, is
reducible to another one, B, if there is way to go from the solution of P, to the solution
of P, by mapping variables and values in P; into variables and values in P,.

Definition 7 Given a set S, we will write t(S) for the set of elements ¢ defined in the
following way:

® cEt{S] for ﬂ“:ES;

® <enuenen >E£(S) for all n > 1 and for all e €t(S)a

In other words, the set ¢(S) is the set of all the tuples of elements of § and of all
the tuples of tuples of elements of S, and so on with any level of tuple nesting. In the

following definition of reducibility we will apply the above operation to sets of variables
(usually named V; for some i) and also to sets of parameters (PAR;).

6

Definition 8 (reducibility of one CSP to another) Given two CSPs P, and Py, P,
18 reductble to Py if there exists a pair of functions F = (fy, f;), such that

¢ f1:V; —+t(Vy), and

o f2:(Vi xt(PAR;)) — t(PAR,), where PAR, is a set of parameters ranging over Dy,
while PAR; contains paramelers ranging over Dy, and

o fa{z,pa) = py, where p, € t(PAR,) and p; € t(PAR;), if and only if the value of = in
each solution of Py is py whenever the value of f;(z) in each solution of Py is py.u

The meaning of the two functions f, and f; is the following: f, maps variables of
Py to tuples of variables of Py, in a way that writing f,(z) = v means that to know
the value of z in a solution of P, we have to look at the value of y in a solution of
Py. On the other hand, f; tells how those values are related. In fact, as stated in the
definition, writing fy(z,p;) = p; means that z assumes the value p, whenever y (the
variable corresponding to z according to f;) assumes the value p,. Note that p, and
pz2 are not values of the domains but parameters to be instantiated on the domain, thus
eliminating the possibility of a semantic relationship between them. Let us clear the
concept of reducibility with the following example.

Example 1 : Consider a CSP P, =< {z,y,2},{a,b,c},{c}, con, def >, where con(e) =<
z,y,2 > and def(c) = {< a,b,e >}. Consider also a CSP P, =< {2, ¢}, {a,b,¢,d},
{c1,c2,c8}, con, def >, where conle;) =< 2',v > and def(c1) = {< a,d >}, and con(e;) =<
v, v > and def(es) = {< b,d >}, and con(cs) =< 2',v > and def(es) = {< ¢, d >}. P; and
Py are represented in the following figure.

def(c) = {<abe>} def(cl) = {<ad>}
defic2) = {<bd>}

del{c3) = {<c,d>}

P P2

In this figure and in all the following ones, variables are inside circles, binary con-
straints are represented by arcs (straight lines between two variables) and non-binary
constraints are squared objects connected to all the involved variables through lines.
Sometimes, besides the name of the constraints, also their definition will be written
near the line (or the boz) representing the constraint,

Py 15 reducible to Py because of the existence of the following two functions:

o fii{zy e} = {4, #,v}*, such that:

- hiz) =4,
- fi{y) =+,
- _fll:xj =

o f1:({z vz} x {pa}) = {p1}, such that:

— fal=z.p) = p,
- 2w p) = »,
~ filz,p) = p.

The meaning of the above function definitions is that, in all the solutions of Ay, z (resp.
v, and z) assumes the same value as z' (resp. o, and ') does in P;. Or, equivalently,
that the solution of P can be obtained from the solution of P, by dropping the value of
the variable v.g

If P, is reducible to P, then P; has at least as much information as P, if not more.
In fact, only in this case could we obtain the solution of P, from that of Py. Thus, if
Py and P; are mutually reducible, then it is fair to conclude that they contain the same
amount of information. That's why they should be considered equivalent.

Note that the two CSPs of the previous example are not equivalent in the extended
sense, because there is no way to reduce 7, to P, i.e. given any function f; that maps
the variables of P, to variables or tuples of variables of P, there is no way to find a
function f; that respects Definition 8.

Note also that we allow the correspondence between a variable of a problem and a
tuple of variables of another problem. This is, among other reasons, because we admit
the possibility of structured domains, i.e. domains whose elements are tuples of values
instead of, as usually, values. Let us consider the following example.

Example 2 : Let p, =< {z,y,2,v}, {a,b, c,d}, {e1,¢1}, con, def >, where con(e)) =< z,y,z >
ond def(e;) = {< a,b,c >}, and eon(e3) =< y,v > and def(ca) =< e,d >. Also, let
Py =< {wl,wg}. {n.b,:,d}.{c},:omd:f =, where can(:} =< wy,wy > and dcfi:c] =
{<<abe><ecd >>}. Py and P; are represented in the following figure,

def(cl) = {<abc>) defic) = {<<abie> <cds>)
def{c2) = {<c.d>)

P2

P1

Py can be reduced to Py as follows:

o fi:{z,y2,0} = {u, wet ™, such that:

= filz) = w,
= fily) = w,
= filz) = wy,
= filv) = wa.

0 fy: {{z,_y,z, u} * {pg})}—* {pl}, such that:

— .fz [z, L pary, parz, parg }J = pary,
=k [!n’: < parj, parp, parg }] = pars,
= fala.< pary, pary, parg }} = pars,

— fa2(v, < pary, pary >) = pary.

Also, P, ean be reduced to P, as follows:

o fi:{w,wa} — {z,u,2 0}, such that:

= filwy) =< z,9,2 >,

= fl[wz} SsCnhv e
o f2t({ws, wa} x {Pli-};"" {p}, such that:

~ Ja{wy, < pary, pary, pary >) =< pary, pary, pary >,

— fi(wz, < pary, pars >) =< pary, pary >.

Thus Py and Py are equivalent in the new sense of Definition 6.

Note that the construction of fy and f; such that P, is reducible to Py is not unique.
In fact, we could have fy(y) = wy (instead of fi(y) = w,), and then faly, < pary, pary >) =
pary. The reduction would have been different, but st would have been correct as well.g

To prove that our new definition really describes an equivalence relation, we have to
show that it is reflexive, symmetric, and transitive.

Lemma 1 (reflexivity) The extended equivalence is reflezive, i.e. P =, P
for all C5Ps P.

Proof: Given P, we define f; and f; as follows:

* fi(z) =z forall z in P;

¢ f2(z,p) =pforall z in P.

The functions f; and f; so defined respect Definition 8, thus P and P are equivalent g

Lemma 2 (symmetry) The extended equivalence is symmetric, i.e. P, =, Py if and
only if P, =, Py, for all CSPs P, and P;.

Proof: Obvious from Definition 6.5

10

Lemma 3 (transitivity) The ertended equivalence is transitive, i.e. P, =, P, and
Py =, Py implies P, =, Py, for all CSPs P, Py, Ps.

Proof: If P, =, P, then there exists a function f; : v, — t(V2). Also, because of the
equivalence of P, and Py, there exists a function f] : V3 — t(Vs). Consider now the
composition of such functions, i.e. fy 0 jj. By definition of function composition, we
have that fy o fj : V3 — ¢(¢(v2)). But by Definition 7 it is easy to see that ¢(¢(S)) = ¢(s)
for any set §,s0 fy 0 f} : V; — t(V3). Also, let us consider f, and fy similarly. Because of
the totality of V; and V; respectively, it is easy to see that f, 0 f1: (Vi % {ps}) = {m},
where p; ranges over D; and py over t(Ds). Also, by looking at the definitions of f; and
f2» we can deduce that f; o fi(z,ps) = p, if and only if the value of z in each solution
of Py is p; whenever the value of f, o f](z) in each solution of Py is ps. Thus we can set
F=(fiefi,f20f;), and we have that P, can be reduced to Ps. Similar reasoning can
lead to the construction of two functions such that Py is reducible to Pi. Thus P, =, A

Thus the following theorem obviously holds.

Theorem 1 The extended equivalence, as defined in Definition 6, is an equivalence
relation.

Proof: Follows from Lemmas 1, 2, and 3.4

Note also that any pair of CSPs which are equivalent in the old definition are still
equivalent in the new definition, so no information is lost. To show that, it's enough to
propose a pair of functions f; and f; which respect Definition 6 but map one solution
to a concident one. The definition that we propose is as follows:

o fi(z) =2, forall zin P, and 7' in Py
® f2{z,p) = p, for all z in P, and any parameter p.

This means that for every variable z in P, there is a variable 2’ in P; which assumes the
same value in all the solutions. Thus such solutions of P, and P; coincide. Thus the
following corollary obviously holds.

Corollary 1 (=, extends =,) Given two CSPs P, and Py, if P, =, Py, then P, =, Py

11

Furthermore, the new equivalence is a strict extension fo the old one, i.e there are pairs
of CSPs which are not equivalent according to the usual definition, but they are now
with the new one, as shown by the above example. However, the new definition does
not seem too loose, because only the pairs of C§Ps which intuitively describe the same
situation, at least in a syntactic sense, turn out to be equivalent in the extended sense.

The following example shows a pair of ¢5Ps which are not equivalent according to our
definition.

Example 3 : Let P, =< {z},{a,8},{c},con, def >, where con(c) =< z >, and def(e) =
{<a><bt>}. Also, let P, =< {v1, v}, {a,8},{c}, con, def >, where con(c) =< vy, vy > and
def(c) = {< a,b >} (note that con, def and all the constraint and vartable names are local
to each CSP). P, and P, are represented in the following figure.

[

&
@ defic) = {<p><h>) @ @

defic) = {<ab>}

Pl P2

Now, even if the solutions of the two CSPs contain the same set of values, i.e. {a,b},
there is no way to define f; and f; so to respect Definition 8, because of the parameter
resteriction on f;. In faet, if we set f (z) = w1 (resp. fi(z) = va), then f; cannot bring
the value b (resp. a) from v (resp. vi) to z. If we set fi(z) =< vy, m >, fi, betng
deterministic and parametric, cannot cannot produce both values o and b as different
alternatives for z.g

As mentioned above, the original idea behind the extension of the usual notion of
equivalence of CSPs was that we wanted to allow variable redundancy (besides con-
straint redundancy) in the same equivalence class. It is easy to see that our new defi-
nition of equivalence succeeds in this goal, i.e. P is equivalent to any other problem P,
if P, is Py plus some redundant variables (or constraint, of course, since =, subsumes
=,). The following simple example should clarify the notion of variable redundancy.

12

Example 4 Consider Py =< {z},{a}, {c},con,def >, where con(c) =< z > and def(c) =
{<a>}. Also, P, =< {y,z},{a}, {c1,¢2}, condef >, where con(c;) =< y >, con(es) =< z >,
def(er) = {<a >}, and def(es) = {<a>}. P, and P, can be seen in the following figure.

[=
2

def(c) = {<a>} & “C defiel) = {<a>)

defic2) = {<a>}

M P2

Now, P, and P, are equivalent since Py can be reduced to Py (we can define f, and f
in the following way: fi(z) =y, fa(z,p) = p) and P, can be reduced to P, (f,(y) = z,
f2lw,p) = p).

Note that the redundant part of the problem does not need be disconnected from the
rest. In faet, consider Py =< {v,w},{a}, {c}, con,def >, where con(c) =< v,w > and
def(c) = {< a,a >} (see following figure).

defic) = {<aa>}

P3

Py 1s obviously equivalent to P,, and thus also to P, by transitive properiy.g
Note, however, that the two €SPs P, and P, of Example 1 are not equivalent. In fact,

even if P; seems to be Py with the addition of a variable v, this variable is not redundant
because its information content (the value d) is not embedded in the other variables.

13

However, such situations can be seen from a different point of view by giving a new
definition of solution of a €SP, which allows the possibility of hidden variables. More
precisely, a solution of a CSP P can be defined as the instantiation of some of the
variables such that all the contraints are satisfied (see [6, 3] for a formal definition). The
hidden variables are of course the variables not appearing in the solution. Our extended
definition of equivalence of CSPs can straightforwardly be restated for ¢S Ps with this
new definition of solution. Informally, the idea would be to say that two problems
are equivalent if they contain the same information in the non-hidden variables. Thus,
problems P; and P; of Example 1 could be equivalent if the variable v in P is hidden.

A deeper understanding of our new notion of equivalence of CSPs can be gained in
the next section, where we will use it to prove (or disprove) the equivalence between
the non-binary and the binary CSP which are the input and output respectively of two
known transformation algorithms.

4 [Extended Equivalence of Binary and Non-binary
CSPs

We will now use the new notion of extended equivalence of CSPs proposed in the
previous section to show that binary and non-binary CSPs have the same expressive
power. The idea is to build a binary CSP B, from a given non-binary one Py, and then
to prove, if possible, that P, =, P,. In the following two subsections we will describe
and compare two different well-known approaches to the implementation of this idea.

Nete that the proof of the equivalence of binary and non-binary CSPs does not
imply that one of those two formalisms has to be abandoned. In fact, many problems
are better expressible in one of the formalisms and trying to expresss them in the other
one would be very unnatural, Also, even though many efficient solution algorithms have
been developed for binary CSPs in the past (thus suggesting that the best way is to
always translate a non-binary CSP into a binary one before any processing), there has
also been a successful attempt to develop a theory of efficient relaxation and solution
algorithms for non-binary CSPs ([6, 3]).

14

4.1 First Approach: Addition of Variables

In this section, we show that given a k-ary constraint, it is possible to obtain a set
of binary constraints which expresses at least the same information contained in the
original constraint. Consider a C8P P =< V, D, C, con, def > such that

@ V={|.r1,...,u*};
s OC= {c};
L] con[c} = Ve Vg >

In other words, P has k variables and only one k-ary constraint connecting all of
them. We want now to obtain from P an equivalent binary CSP, let us call it B(P).

Let us define B(P) =< V;, Dy, Cy, con, def > such that:

s V=1V

* Dy =Dy

® O = {e;,1 <4,5 < ki # 5}

* con(eif) =< v, v; > for all ¢ij € Cy;

o def(cij) is the projection of def(c) on the variables v; and vi, for all ¢;; € 6.

That is, B(P) is obtained from P by projecting the constraint in P on each pair of the
original k variables.

Example 5 Consider a CSP P as defined above where k = 4, t.e., P has four variables,
all connected by the constraint c. In this case, both P and B(P) can be seen in the
following figure.

15

In this figure, the definition of each constraint c¢;; of B(P) is the projection of the
definition of ¢ onto the variables v; and v;.g

We will now try to find some relationship between the solutions of P and B(P).
Theorem 2 Given P as described above, we have that Sol(P) = def(c).

Proof: Straightforward from Definition 4 (for the solution of P) and Definition 2 (for
def(c))m

If Sol(P) = Sol(B(P)), then we have found an equivalent (in the usual sense) binary
representation for the given k-ary constraint ¢ of P. However, it has been shown in [2]
that in general Sol(P) # Sol(B(P)). Now, the problem really is not the fact that the
solutions are different, but that it is always Sol(B(P)) C Sol(P), which means that B(FP)
contains less information than P.

The idea for solving this problem is to build a new binary CSP, say B'(P), by relaxing
the assumption that the binary CSP has to have the same number of variables as the
non-binary one. The aim is to be able to encode in B'(P) at least the same amount of
information that P contains. Note that B'(P) cannot be equivalent to P in the usual
sense because of the added variables. The question is now if P and B'(P) are equivalent
even in the extended case.

As mentioned above, this transformation (from P to B'(P)) is already known in
the CSP “folklore”, together with the informal (and wrong) idea that P and B'(P) are
equivalent. The following figure illustrates the key idea of this new transformation.

P B'(F)

The new variable, say vp.;, has as many elements in its domain as the number of
tuples defining the original constraint . The new problem has k binary constraints,
¢1,...,ck, each one (say ¢;) connecting v and vy, More precisely, if n tuples define

16

constraint ¢, say ty,...,t,, then we introduce 4,,...,d, as the domain of vy;,. For each
tuple t; =< t37,...,t;j > in the definition of ¢, we have < 15, d; > in the definition of ¢;,
«+y < tgg,d; > in the definition of ¢. In this way, the old variables are linked together
indirectly by the values of the new variable and are constrained to assume just those
values allowed by Soi(P).

We will now formally describe the binary CSP #'(P). Giventhe CSP P =< V, D, C, con, def >
as described before, suppose that def(c) = {t;,...,t,}, i.e. that the constraint ¢ is defined
by n k-tuples of values of D.

We define B'(P) as follows: B'(P) =< V,, D, €4, cony,defy > such that:
o Vi =VU{we i

e Dy = DU{dy,... d.}, where dy,...,d, are any n distinct values corresponding to
the distinct tuples t;,...,tn;

L] C+ - {ﬂl.!r Frct};
o cony(e;) =< vi, vis1 >3

o defi(e;) = {(tji,d;), where ; = 1,...,n and ¢;; is the projection of k-tuple ¢; on
variable v; (from def(c))}.

We will now prove that P is reducible to B'(P), which means that B'(P) has at least
as much knowledge as P.

Theorem 3 P is reductble ta B'(P).

Proof: Given P =< V,D,C,con,def > and B'(P) =< V.,D,,C, con,,def, >, We can
define the two functions f; and f; in the following way:

® f1:V — V4, with fi(z) = z for all z in ¥ (note that V; € ¢(V,), so our definition
of f; respects Definition 8);

o f2:(V x{p}) = {p}, with fa(z,p) = p for all z in V.

17

Thus, by Definition 8, P is reducible to B'(P).g

The following theorem shows that the opposite is not true, i.e. that B'(P) is not
reducible to P. This means that B'(P) contains strictly more information than P. Thus

it is not correct to consider these two problems as equivalent, not even in the extended
BENEE.

Theorem 4 B'(P) is not reducible to P.

Proof: There is no way to define f; and f; according to Definition 8. Specific coun-
terexamples can easily be given to show that in not all cases can any one parametric
transformation associate the proper values between the two CSPs. In particular, as
mentioned before in an instance of this general situation (see Example 1), there is no
way to define f; such that the new values assigned to the variable vy, in B'(P) can be
syntacticaly transformed into P. This restriction is due to the parametric definition of
fim

If now we consider a general CSP with both binary and non-binary constraints, we
can represent it in a binary way by applying the transformation described above to
each one of its non-binary constraints. More precisely, given a CSP P with n variables,
b binary constraints and né non-binary constraints (each connecting m; variables, for
i = 1,...,nd), let us call B'(Pi), for i = 1,...,nb the binary CSP corresponding to
the ith non-binary constraint as described above, and let us also call B”(P) the CSP
obtained putting together B'(F, 1),..., B'(P,nb) and the binary constraints of P.

More precisely, we have P =< V, D, €, con, def >, where

[V={-.r;,....u,,},

* C= {cl,..-.::b.caﬂ,...,cH,ﬂ.}, where | con(c;) |=2fori=1,...,b and | con(e) |=
myfori=b6+1,...,b+nb.

Also, we have B'(P,{) =< V;, D,C;, con;, def; > (obtained from the ith constraint as
described before) and B”(P) =< V™, D,C”, con”, def” >, where

e V” — Uf:;._,,.nh v;t

18

* C” = [LJi=I,...,nb Ci] U{cll T 1"':5}'

Note that 8"(F) has exactly n + nb variables and s + Li=1,..,ntm; binary constraints.
As in the simple case of only one non-binary constraint, in the general case we can prove
the same results about reducibility between P and B"(P). Le., we can prove that P is
reducible to B”(P) but B"(P) is not reducible to P.

Theorem & Given P and B"(P) as described above, then P is reducible to B™(P) but
B"(P) s not reducible to p.

Proof: Straightforward from Theorems 3 and im

In other words, the above theorem shows that the approach of adding variables to
transform a non-binary CSP into a binary one is erroneously believed to obtain an
equivalent CSP. In fact, it produces neither a CSP equivalent to the given one in the
usual sense, nor a CSP equivalent in the extended sense.

However, as mentioned in Section 3, the approach in which it is possible to partition
the variables of a CSP into hidden and non-hidden variables could be useful to solve such
discrepancy, since the additional variable vk+1 could be considered a hidden variable.

The combination of the hidden variables approach with ours could be of great in-
terest. In fact, in such framework it would be possible to use our approach to allow
constraint and variable redundancy, and the other approach to allow a kind of user-
specified redundancy which wouldn't be automatically recognizible.

4.2 Second Approach: Dual Representation

In this section we describe the second approach to transform a non-binary CSP to a
binary one. Unlike for the approach described in the previous section, this one produces
a binary CSP equivalent to the non-binary one in the extended sense.

Usually, a CSP is graphically represented by a labelled (hyper)graph, which is re-
ferred to in the literature as the primal constraint graph.

Definition 9 (Labelled Graph) A labelied graph is a triple < N, Al >, where

19

* N s a set of nodes,
* A5 aset of arcs (i.e. subsets of), and

® [18 a function labelling the arcig

Definition 10 (Primal Constraint Graph) Given a CSP p =< V,D,C,con, def >,
the primal constraint graph associated with it is a labelled graph PG(P) =< N, Al 2
such that there exist two bijections pnode and parc such that

® prode : V — N,
® parc : C — A, and

* Ve € C i(parc(c)) = def(c).m

In other words, | N |=| v | and | A|=| ¢ |, and if arc a of PG(P) corresponds to
constraint ¢ of P (i.e., a = pare(c)), then a connects the nodes corresponding to the
variables connected by ¢, and it is labelled by the definition of .

The idea now is to represent a CSP not by its primal constraint graph, but by using
a graph that is dual to the primal constraint graph. The dual constraint graph is again
a labelled graph, where nodes represent arcs of the primal, and ares are labelled by
variables shared by the constraints represented by the connected nodes,

Example 8 Consider a CSP P with four variables, vy, vy, vs, vy, and twe S-ary con-
straints ¢y and ¢y, ¢, connecting vy, vy, vy, and ¢; connecting vy, vs,vq. The dual constraint
graph contains two nodes, ny and ny, each corresponding to one of the constraints of P,
and an erec, a, which connects them and is labelled by the shared variables (in this case

vz and vy). The following figure shows both the primal and the dual constraint graph for
P,

20

cl
&2 v3
a l{a)=<v2 v3i>
c2
N
A
@ @

More formally, we have:

Definition 11 (Dual Constraint Graph) Given a CSP P =<V, D,C, con, def >, the
dual constraint graph is a labelled graph DG(P) =< N, A,1 >. Let us consider a bijection
dnode such that dnode : ¢ — N. Then we have

® N = dnode(C),
o A= {{dnode(c;), dnode(cs)} for each ¢y,¢3 € C such that con(ey) N con(es) # ®}, and

. f(“} = Cﬂﬂ{‘:‘l} n '3"-"“'1{'22] Jor each a € A such that a = {dnadc{q], dnoda[c:}}..

This smplicitly defines a bijection darc between the set of constraint pairs {(cy,¢5) |
con(ey) Meon(ez) # @} and A g

It is easy to see from the above definition that, given an arbitrary CSP, while its
primal constraint graph can contain in general non-binary ares, its dual constraint graph
is always a binary graph, no matter the arity of the constraints in the given CSP. Note,
however, that a dual constraint graph is a labelled graph and not a CSP, thus we have
to make another step in our process of going from a non-binary CSP to an equivalent
binary CSP.

21

Since both primal and dual constraint graphs are labelled graphs, given a binary
graph G which is the dual constraint graph DG(P) of some CSP P, G can always be seen
also as a primal constraint graph of some binary CSP, say P! (i.e. G = PG(P')). And
because functions dnode and dare are invertible, we can establish a one-to-one mapping
between the variables of P and P'.

To find P’ given G, we must consider the inverse of the transformation described in
Definition 10, and apply it to the given graph ¢. Given ¢ = DG(P) =< N, A, > with
P =< V,D,C,con,def >, we can define a new binary CSP P =< V', D', &', con' def' > as
follows:

o V' = {vf, where] = con(dnode™"(n;)) and Dy = def(dnode™"(n;)) };
o ' = {c'(a),a € A}, where

— def'(¢'(a)) = def(ei) M def(c;) projected over i(a) for e, c; = darc™'(a), and

— con'(c'(a)) = {v},v;} where u},u; € V' and & connects nodes n;,n; € N.

In other words, the variables of P’ correspond to the nodes of G (which in turn
correspond to the constraints of P) and the constraints of 7' (all binary) correspond to
the ares in G (which in turn correspond to the shared variables of P). Since ¢ = DG(P),
each variable v; in P is in reality a tuple of variables: those connected by the constraint
¢ of P corresponding (via dnode™) to the node »; of ¢ = DG(P)). This is the crucial
transformation: each variable in the binary CSP P represents k variables connected by
some k-ary constraint in the non-binary CSP p.

The domain of v; is the set of all the tuples defining the non-binary constraint ¢ in
P. Also, each constraint ¢' of P/, connecting variables v} and «}, is an *ﬂuaiity constraint
among the variables labelling arc a of G, which connects the nodes corresponding to
v; and v;. In order to define each ¢/, we must essentially find the pairwise solutions
between two constraints which share variables in the original CSP.

Example 7 Consider the simple case of a CSP P with three variables vy, va, and uvs

and a constraint ¢ connecting them all which only allows the tuple < a,a,a > as possible
assignment to the three variables. The CSP P which is dersved from the dual constraint

22

graph has only one variable, v', consisting of the 8-tuple < vy, vq,vs > from P. The domain
of v' is < a,a,a >, f.e., the definition of constraint c. The graphical representation of
both P and P’ can be seen in the following figure.

Example 8 Consider now the case in which P consists of four variables {vy,v1, vs, v}
and three constraints {c;,cs,es} defined as follows:

e ¢ connects the variables vy, vy, vy, and its definition is the single tuple < 1,1,0 >
(the domain D = {0,1});

® ¢y connects the variables vy, vy, v, and sts definition consists of the two tuples
<1,1,1>and<0,1,0>;

e c3 connects the variables va, vs, vy, and its definition consists of the tuple < 1,0,0 >.

By definition, Sol(P) consists of the set of tuples of values of the variables < vy, vq, vs, vg >
which salisfies all three constraints. In this particular case, such a set is empty.

The dual constraint graph DG(P) has three nodes, ny, ny, n3, corresponding to the three
constraints cy,c3,c3 of P. There is one arc between each pair of nodes, labelled by the
shared variables. More precisely, we have the following constraints:

e constraint a;, connecting nodes ny,ny and labelled by vy, va;
e constraint ay, connecting nodes ny,ny and labelled by vq, vy;

o constraini ay, connecling nodes ny, ny and labelled by vg, vs.

23

The corresponding P' has three variables: v =< vy, v, 0 > vy =< vy, vy, vy >, and
vy =< vz, vug, vy >, with domain the set of all possible triples of values on {0,1}. Also, it
has three binary constraints:

® ¢}, connecting vy and vy, and with definition {<<1,1,05,<1,1,1 >>} (note that
this definition is a singleton set containing a tuple uwith two elements, each element
being a tuple of three values);

® ¢, connecting vy and v, and with definition {<< 1,1,0 >, < 1,0,0 >>};

® cy, connecting vy and v}, and with definition {<<0,1,0>,<1,00 >>}.

Since there is no tuple of values Jor < vy, vy, vy > which satisfies all three constraints,
there is also no solution for P'. Both P and P! for this ezample can be seen in the
Jollowing figure.

Wal) = <v] vk
WAl = vl vds
Wad} = vl vl

Note that in the above example case P and P have the same solution, i.e. the empty
set of tuples. However, because of the different representation of P and P, they may

24

have different sets of variables (in this case, P has four variables and P’ has three), or
different domain structure (here, the domain of the variables in P is a set of values,
while the domains of the variables in P' are sets of triples of values). This means that
in general they cannot have the same solution. That is, if the structure of the CSPs
remains the same, then no matter how we change the values of the definitions of the
constraints, the two CSPs can never be =,.

Example 9 Suppose that P is the same as the previous ezample, but that the constraints
have a different definition. More precisely, let

e ¢y and ¢y be defined as before;

® cy be defined by {<1,1,0 >},

In this case, it is easy to see that the solution of P (for the ordered set of variables
vi,vg, vy, vg) 15 {< 1,1,1,0 >}, while the solution of P (for the ordered set of variables
vi, g, vy) 18 {<<1,1,0>,<1,1,1>,<1,1,0 >>) ..

However, even if P and P’ don't have the same solution, the intuition tells us that
they have substantially the same meaning. We will formally prove this conjecture by
showing that P and P’ are mutually reducible, and thus equivalent in the extended sense
of Definition 6.

Lemma 4 Given any CSP P and the binary CSP P' as described above in this section,
P is reducible to F'.

Proof: We must define the functions f; and f, in such a way that Definition 8 is
satisfied. Beginning with the variable mapping, we must define f; : v — t(v'). We
begin by noting that ¥v € ¥, 3¢ € € such that v € con(c). And ¥z € ¢, 30’ € V' such that
¢ = dnode™*(pnode(v')). But if we naturally define filv) = o' if v € con(dnode™ (pnode('))),
the result is not a function. Because any variable v in P may participate in more than one
constraint, then there may be more than one v’ in P’ such that v € con(dnode ™ (pnode(v))).
Although this ambiquity is not intuitively important, it must be removed formally.
Therefore, let

25

o fi:V —¢(V'), such that f;(v) = o]
where i is the smallest index of V' such that v € con(dnode ™ (pnode(v})));

® fa:(V x t(PAR')) — t(PAR), such that, for all vin V, fz(v,< p1, ..., pe >= p;
ifh[u]l =<wu,...,ue>and v=y,1 <5<k,

Now we must show that every tuple t =< t;,...,tx >€ Sol(P) can be derived from
these functions and Sol(P'). Suppose there was no tuple ¢ € Soi(P) such that ¢ could
be obtained by applying f; to ¢’ for each v € V. We can show that this supposition is
false by building a ¢’ which must be in Soi(#') and will yield ¢ by use of f,.

Let u(t,1) denote the ith element of tuple ¢; i.e, u(< t1,... - T T A o
Let 8; = {v' € V' | 4 € con(dnode " (pnode(v])))}. Now, for each element of &, v, where
#(vh 1) = w, construct t), by assigning p(t},1) = t;. Repeat this procedure for 1 < i < k.
Then we have defined a tuple t' of tuple values for each «' € V', So for a given v; € V,
let fi(v) be v, and let «) € «'. If u(v),,1) = v, then u(t), 1) = t;. So faw,t,) = . Thus
the constructed t' yields ¢ by use of f;. And this ¢ must be in Soi(P;).

This ¢' has the property that for any t,,¢, € ¢' such that Juy € V such that y =
p(u;_,m] = _u.[l..r;.,ﬂ] for some m,n, then ¢ = p{!:,m} = p(r;,,ﬂ}. If this ¢ ¢ SGI[P‘J, then
3e' € ' with dom(c') = {v, v}, such that {¢,¢,} & def(c'). Then by the definition of
P, 3m,n and y € V such that for vy = u(con(c,), m) = #leon(ey), n), p(th, m) = plty,n)
def(ez) N def(cy) projected on v and so u(t, i) € Sol(P). —+ Therefore ¢' is in SolP').
And the functions fy, f; can thus be used to derive any ¢ € Sol(P) from Sol(P').g

Clearly P’ contains as least as much information as P. Showing the inverse is easier
with an intermediate lernma.

Lemma 5 If tuple ¢! € Sol(P'), then V tuples ¢, and ¢, € ¢', for variables v, and v,
respectively, if Jv € V such that v = p(vl, m) = 4 uy,n), then p(t,, m) = sty n).

Proof: By hypothesis, 3v € V, ¢;,c, € C such that v = p(econ(c.),m) = ulcon(e,), n).
By definition of P, since v is a shared variable between ¢, and ¢,, 3¢' € €' such that
con(e') = {v}, v, } and def(c') = def(c:)Ndef(c,) projected over v. Since tg.ty €1 € Sal(P),
then 1, € def(c'), and u(t,,m) = u(t),n)m

iy

26

Lemma 6 Given any CSP P and the binary CSP P' as described above in this section,
P is reducible to P.

Proof: For the reducibility of P’ to P, the functions f; and f, are defined as follows:

e fi: V' = ¢(V), such that f;(v') =< vy,..., ;>
if :nn{dﬂodc"lfpnodr{u']]} = gy) D

o fa: (V' xt(PAR)) — t(PAR'), such that, for all ' in V', where f,(v') =< vy, ..., v >,
f:{url': Ploes« Pk }] =< Plyses Pk >

We need to show that any ¢' € Sol(#') can be obtained by applying these functions
to some t € Sol(P). Actually, we can use the proof of lemma 4 to do so.,

The proof of lemma 4 constructed a t' from a ¢ € So!(P) and showed that ¢' € Sol(P).
This constructed ¢’ had the property that ¥ tuples ¢, and ty € t', for variables v} and
respectively, if Jv € V such that v = (s}, m) = u(v},n), then u(t,,m) = u(t), n). Lemma
5 assures that there is no ¢' € Sol(#') which does not have this property. Thus, there
is always some tuple of values ¢ for v from which some ¢' € Sol(P') can be constructed.
But, additionally, the proof of 4 showed that for all ¢/ Sel(P') which had this property,
the associated t € Sol(P). So there is no t' € Sol(P’) which cannot be constructed from

a t € Sol(P). The defined functions above are simply that construction.g

Theorem 6 Given any CSP P and the binary CSP P' as described above in this section,
P=,P.

Proof: This theorem follows from lemmas 4 and 6.

We have thus shown that the second approach to the transformation of a non-binary
CSP to a binary one yields an equivalent (in the extended sense) CSP. This result has
been informally believed and used in the constraint literature before, but has never been
formally proved, the only reason being that the tools for dealing with equivalence of
C8Ps were not appropriate.

27

5 Conclusions

Having found the usual definition of equivalence of CSPs unsatisfactory, we proposed a
new definition, based on the concept of mutual reducibility of CSPs, where reducibil-
ity means information conservation. The key idea is that if it is possible to obtain
the solution of one CSP from that of another one, and viceversa, by purely syntactic
transformations between variables and values, then the two CSPs should be considered
equivalent, because they obviously contain exactly the same non-redundant informa-
tion. Semantic operations, which permit the active solving of one CSP, are precluded.
(An extreme example of a semantic reduction of CSP P2 to CSP P1 would be to simply
solve P2, even though the solution of P1 played no part in the problem solving.)

By using this new definition, we formally addressed the issue of the equivalence of
binary and non-binary CSPs. We considered two known algorithms for transforming a
non-binary CSP into a binary one and, even though they have always been believed to
produce an “intuitively equivalent” binary CSP, we proved that in reality such beliel
wase not correct, In fact, none of these two algorithms produces an equivalent CSP in
the usual sense, while with the new definition it is possible to show that only one of

them does.

This new definition of equivalence of CSPs makes a fundamental contribution te
the existing constraint satisfaction theory, in that it formalizes our intuitions about
equivalence, which were not captured by the traditional definition. The result is is a
more appropriate tool to identify redundant information in CSPs, and the formal proof
of an informally known result, not possible with previous definitions. This notion of
equivalence may also be extensible to computational problems in general. The usual
notion of equvilance in computer science is that of time and space complexity. This
new equivalence concept is based on the information content expressed in the formal
problem. While we have not attempted to generalize the equivalnece of CSPs to other
types of problems, this is a promising area for future research.

Acknowledgments

Francesca Rossi would like to thank the Italian Research Council for supporting her
visit at MCC. MCC shareholders supporting this research are Bellcore, CDC, DEC,
Harris, Kodak and NCR.

References

1]

2]

3]

4]

[5]

6]

Dechter R., Pearl J., “Tree-clustering schemes for constraint-processing”, Proc.
AAAT 85,

Montanari U., “Networks of constraints: fundamental properties and application to
picture processing”, Information Seience 7, 1974, pp. 95-132.

Montanari U., Rossi F., “Constraint relaxation may be perfect”, Technical Report
TR-21/89, Computer Science Dept., University of Pisa, Pisa, Italy.

Pierce, C. 8., Collected Papers, Vol. IIl, C. Hartshorne and P. Weiss eds., Harward
University Press, Cambridge, 1933.

Rossi F., Montanari U., “Hypergraph grammars and networks of constraints versus
logic programming and metaprogramming”, Proc Workshop on Metaprogramming
in Logic Programming, Bristol, June 1988.

Rossi F., Montanari U., “Exact solution of networks of constraints using perfect
relaxation™, Proc. Ist Int. Conf. on Principles of Knowledge Representation and
Reasoning, Toronto, May 1989,

29

